Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2017 Volume 39 Issue 4
Article Contents

Xiao-qi LIU, Zeng-qi OU. Existence of Infinitely Many Solutions for a Class of Kirchhoff-Type Problems Involving the Fractional p-Laplacian[J]. Journal of Southwest University Natural Science Edition, 2017, 39(4): 70-75. doi: 10.13718/j.cnki.xdzk.2017.04.011
Citation: Xiao-qi LIU, Zeng-qi OU. Existence of Infinitely Many Solutions for a Class of Kirchhoff-Type Problems Involving the Fractional p-Laplacian[J]. Journal of Southwest University Natural Science Edition, 2017, 39(4): 70-75. doi: 10.13718/j.cnki.xdzk.2017.04.011

Existence of Infinitely Many Solutions for a Class of Kirchhoff-Type Problems Involving the Fractional p-Laplacian

More Information
  • Corresponding author: Zeng-qi OU
  • Received Date: 13/09/2016
    Available Online: 20/04/2017
  • MSC: O176.3

  • In this article, the existence of infinitely many solutions for Kirchhoff problems involving the fractional p-Laplacian with superlinear nonlinearity are obtained by using the symmetric mountain pass theorem.
  • 加载中
  • [1] XIANG M Q, ZHANG B L, GUO X Y. Infinitely Many Solutions for a Fractional Kirchhoff Type Problem Via Fountain Theorem[J]. Nonlinear Anal, 2015, 120: 299-313. doi: 10.1016/j.na.2015.03.015

    CrossRef Google Scholar

    [2] XIANG M Q, GIOVANNI M B, TIAN G H, et al. Infinitely Many Solutions for the Stationary Kirchhoff Problems Involving the Fractional p-Laplacian[J]. J Differential Equations, 2016, 29: 357-374.

    Google Scholar

    [3] XIANG M Q, ZHANG B L, MASSIMILIANO F. Existence of Solutions for Kirchhoff Type Problem Involving the Non-Local Fractional p-Laplacian[J]. J Math Anal Appl, 2015, 424: 1021-1041. doi: 10.1016/j.jmaa.2014.11.055

    CrossRef Google Scholar

    [4] RABINOWITZ P H. Minmax Methods in Critical Piont Theory with Applications to Differential Equations[M]. Providence RI: American Mathmetical Society, 1985: 1-6.

    Google Scholar

    [5] MARCO D, SERGIO L. Linking Over Cones and Nontrivial Solutions for p-Laplace Equations with p-Superlinear Nonlinearity[J]. Ann Inst H Poincaré Anal Non Linéaire, 2007, 24: 907-919. doi: 10.1016/j.anihpc.2006.06.007

    CrossRef Google Scholar

    [6] 刘芮琪, 吴行平, 唐春雷.高维空间中一类奇异Kirchhoff型问题正解的存在性[J].西南大学学报(自然科学版), 2016, 38(4): 67-71.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1106) PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors

Existence of Infinitely Many Solutions for a Class of Kirchhoff-Type Problems Involving the Fractional p-Laplacian

    Corresponding author: Zeng-qi OU

Abstract: In this article, the existence of infinitely many solutions for Kirchhoff problems involving the fractional p-Laplacian with superlinear nonlinearity are obtained by using the symmetric mountain pass theorem.

  • 考虑如下Kirchhoff型分数阶p-拉普拉斯方程:

    其中$\mathit{\Omega } \subset {\mathbb{R}^N} $(N≥3) 是一个非空有界开集,∂Ω满足Lipshcitz条件,$ p_s^* = \frac{{Np}}{{N-sp}}$,(-Δ)ps是分数阶p-拉普拉斯算子,定义如下:

    其中x$\mathbb{R} $N,0<s<1<p<N,spN. M$ \mathbb{R}_0^ + \to \mathbb{R}_0^ + $是连续函数($\mathbb{R}_0^ + $表示除去0以外的正实数集),且满足下面的条件:

    (V)存在θ>0,使得M(t)tθρ(t),其中

    且存在0<m1m2<∞与α>1,使得

    m1tαρ(t)≤m2tα

    $ f:\mathit{\Omega} \times \mathbb{R} \to \mathbb{R}$是Carathéodory函数,设

    满足下列条件:

    (f1)对于所有的xΩξ$\mathbb{R} $f(x,-ξ)=-f(xξ);

    (f2)对于所有的xΩξ$ \mathbb{R}$,存在a1>0且1<qps*,使得

    |f(xξ)|≤a1(1+|ξ|q-1)

    (f3)对于所有的xΩ,都有

    (f4)对于所有的xΩ,都有

    (f5)对于所有的xΩξ$\mathbb{R} $,存在μθpγ0L1(Ω)且γ1$ {L^{\frac{{sp}}{N}}}$(Ω),使得

    μF(xξ)≤ξf(xξ)+γ0(x)+γ1(x)|ξ|θp

    (f6)对于所有的xΩξ$\mathbb{R} $F(xξ)≥0.

    最近有许多文献研究了Kirchhoff型分数阶方程.文献[1]研究的是p=2的情况,利用喷泉定理,获得了方程无穷多个解的存在性.文献[2-3]研究的是带有满足(AR)条件的非线性项的方程.其中,文献[3]利用山路引理,获得了方程两个非平凡弱解的存在性;文献[2]利用对称山路引理,获得了方程无穷多个解的存在性.受以上结果的启发,本文把(AR)条件推广到一般的超二次条件,并得到方程无穷多个解的存在性.

    Q= ${{\mathbb{R}^{2N}}} $\ի,其中ի=C(ΩC(Ω) $ \subset {\mathbb{R}^{2N}}$以及C(Ω)= ${\mathbb{R}^N} $\Ω. W$ {\mathbb{R}^N}$$ \mathbb{R}$中的勒贝格可测函数的线性空间,并且满足

    考虑W的闭线性子空间W0={uWu(x)=0,a.e. x$ {\mathbb{R}^N}$\Ω},并且在W0中定义范数为

    由文献[3]可知,当p∈[1,ps*]时,嵌入W0 $ \circlearrowleft $Lr(Ω)为连续嵌入;当p∈[1,ps*)时,此嵌入为紧嵌入,并且存在常数

    C0=C0(Nrps)>0

    使得

    定义I:W0 $\to \mathbb{R} $为方程(1) 对应的能量泛函,即

    如果uW0满足

    则称u是方程(1) 的弱解.本文主要的结果是:

    定理1   假设0<θ$\frac{N}{{N-ps}} $,条件(V)与(f1)-(f6)都成立,若θpqps*,则方程(1) 有无穷多个解.

      利用对称山路引理[4].由条件(f1)可知F(x,·)是偶的,且I(0)=0.下面分两步来完成定理1的证明:

    步骤1   证明泛函I有山路结构.

    由条件(f4)可知,对任意的ε>0,都存在δ1=δ1(ε)>0,当|ξ|<δ1时,对于所有的xΩ,都有

    由条件(f2)可知,对于所有的|ξ|≥δ1xΩ,都存在

    由(3) 式和(4) 式可知,对任意的ε>0,对所有的xΩξ$\mathbb{R} $,都有

    由条件(f3)可知,对任意的K1$\frac{1}{p} $ρ(1)C0-θ,都存在K2,当|ξ|>K2时,对所有的xΩ,有

    由条件(V)可知,对于所有的t>0,M(t)>0,并且:

    由(5) 式和(7) 式可知,对于满足‖uW0≤1的u,有

    由(9) 式可知,存在足够小的r,当‖uW0=r时,有

    I(u)≥rθp $\frac{1}{p} $ρ(1)-εC0θp-CεC0qrq-θp=α>0

    EW0中的有限维子空间,对满足‖uW0=1的任意的u,对于所有的t>max{K2,1},由(6) 式和(8) 式可知

    由于K1$ \frac{1}{p}$ρ(1)C0-θ,则存在足够大的$ {\mathbb{R}_0}$>0,当‖uW0= $ {\mathbb{R}_0}$时,有I(u)<0.

    步骤2   证明I满足(PS)条件.

    设{un}$\subset $W0满足I(un)有界,且当n→∞时I′(un)→0.则存在C>0,有

    |〈I′(un),un〉|≤CunW0

    I(un)≤C

    首先证明{un}是有界的.利用反证法,假设‖unW0→∞,则由条件(V)和条件(f5)可得

    因为I(un)和|〈I′(un),un〉|≤CunW0,且‖unW0无界,可知

    则由(10) 式和(11) 式可知

    由于{ωn}有界,则存在一列子列,仍记为{ωn},在W0ωn$\rightharpoonup $ω,在Lp(Ω)中ωnω,且在Ωωn(x)→ω(x)几乎处处成立.由(12) 式可知

    则存在b>0和r>0,使得

    由文献[5]和条件(f3)可知

    由条件(f6)和法图引理可得

    推出矛盾.由此可得{un}在W0中是有界的.

    下证在W0unu.由于W0是自反的巴拿赫空间,因为{un}有界,所以存在一列子列,仍记为{un},在W0un $ \rightharpoonup $u,在Lp(Ω)中unu,且在Ωun(x)→u(x)几乎处处成立.记

    由Hölder不等式可知

    |Aψ(v)|≤‖ψp-1W0vW0      vW0

    则有

    un$\rightharpoonup $u且在W0*I′(un)→0,可知

    I′(un),un-u〉→0

    即当n→∞时,有

    因为在Lp(Ω)中unu,所以

    f(xun)(un-u)→0

    由文献[3]可知,{f(xun)(un-u)}在L1(Ω)上是一致有界且等度连续的,则由维它利定理可得

    由(14) 式和(15) 式可得

    M(‖upW0)Aun(un-u)→0     n→∞

    又由M(‖upW0)有界可得,当n→∞时,有

    由(13) 式和(16) 式可得

    |Aun(un-u)-Au(un-u)|→0     n→∞

    下面由Simon不等式讨论强收敛性.

    p≥2时,令n→∞,则

    当1<p<2时,令n→∞,则

    其中C是正常数,Cp${{\tilde C}_p} $是Simon不等式中只依赖于p的常数.则由(17) 式和(18) 式可知

    un-upW0→0     n→∞

    综上所述,可知I满足(PS)条件.

    根据对称山路引理可知方程(1) 存在无穷多个弱解.

Reference (6)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return