Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 41 Issue 6
Article Contents

Ni LIU, Jin-shen REN, Yong-feng PANG. Maximal Numerical Range of the Generalized Aluthge Transform[J]. Journal of Southwest University Natural Science Edition, 2019, 41(6): 79-83. doi: 10.13718/j.cnki.xdzk.2019.06.012
Citation: Ni LIU, Jin-shen REN, Yong-feng PANG. Maximal Numerical Range of the Generalized Aluthge Transform[J]. Journal of Southwest University Natural Science Edition, 2019, 41(6): 79-83. doi: 10.13718/j.cnki.xdzk.2019.06.012

Maximal Numerical Range of the Generalized Aluthge Transform

More Information
  • Received Date: 10/10/2018
    Available Online: 20/06/2019
  • MSC: O151.21

  • Let H be an infinite separable Hilbert space and A be a bounded linear operator on H. The generalized Aluthge transform and the generalized*-Aluthge transform of A are denoted by $\widetilde{\boldsymbol{A}}^{t}$ and $\widetilde{\boldsymbol{A}}^{t(*)}$, respectively, where t∈(0, 1). By the method of operational partitioning, for any complex λ, the norm and maximal numerical range of $\widetilde{\boldsymbol{A}}^{t}-\lambda$ and $\widetilde{\boldsymbol{A}}^{t(*)}-\lambda$ are considered, and the relationship between the norm of the inner derivation of $\widetilde{\boldsymbol{A}}^{t}$ and $\widetilde{\boldsymbol{A}}^{t(*)}$ is given.
  • 加载中
  • [1] ALUTHGE A. On p-Hyponormal Operators for 0 < p < 1[J]. Integral Equations and Operator Theory, 1990, 13(9):307-315.

    Google Scholar

    [2] YAMAZAKI T. On Numerical Range of the Aluthge Transformation[J]. Linea Algebra and its Applications, 2002, 341(2):111-117.

    Google Scholar

    [3] JUNG I B, KO E, PEARCY C. Aluthge Transforms of Operators[J]. Integral Equations and Operator Throry, 2000, 37:437-448. doi: 10.1007/BF01192831

    CrossRef Google Scholar

    [4] 刘秀梅, 杨新兵.广义Aluthge与广义*-Aluthge变换的一些性质[J].南阳师范学院学报, 2007, 6(9):7-9. doi: 10.3969/j.issn.1671-6132.2007.09.003

    CrossRef Google Scholar

    [5] JUNG I B, KO E, PEARCY C. Spectral Pictures of Aluthge Tranforms of Operators[J]. Integral Equations and Operator Theory, 2001, 40:52-60. doi: 10.1007/BF01202954

    CrossRef Google Scholar

    [6] 单钰琦, 候国林, 秦文青.有界线性算子广义Aluthge变换的谱分析[J].内蒙古大学学报(自然科学版), 2014, 45(1):1-5.

    Google Scholar

    [7] 刘妮, 李炳杰, 郭艳鹂.广义Aluthge变换的Drazin逆[J].空军工程大学学报(自然科学版), 2014, 15(3):93-95. doi: 10.3969/j.issn.1009-3516.2014.03.022

    CrossRef Google Scholar

    [8] LIU X M, JI G X. Some Properties of the Generalized Aluthge Transform[J]. Nihonkai Math J, 2004, 15(1):101-107.

    Google Scholar

    [9] 刘妮, 李炳杰. Aluthge变换的本性极大数值域[J].安徽大学学报(自然科学版), 2016, 40(2):9-13. doi: 10.3969/j.issn.1000-2162.2016.02.002

    CrossRef Google Scholar

    [10] 李泽, 刘妮, 吉国兴. Aluthge变换值域中的代数算子和平移性质[J].陕西师范大学学报(自然科学版), 2007, 35(4):5-8. doi: 10.3969/j.issn.1672-4291.2007.04.002

    CrossRef Google Scholar

    [11] WU P Y. Numerical Range of Aluthge Transform of Operator[J]. Linear Algebra and its Applications, 2002, 357:295-298. doi: 10.1016/S0024-3795(02)00361-0

    CrossRef Google Scholar

    [12] LIU X M, YANG X B, DU H K. Numerical Range of the Aluthge Transform[J]. Acta Analysis Functionalis Applicata, 2005, 7(3):193-197.

    Google Scholar

    [13] JI G X, LIU N, LI Z. Essential Numerical Range and Maximal Numerical Range of the Aluthge Transform[J]. Linear & Multilinear Algebra, 2007, 55(4):315-322.

    Google Scholar

    [14] STAMPFLI J G. The Norm of a Derivation[J]. Pacifi J Math, 1970, 33(3):737-747.

    Google Scholar

    [15] ZHANG Y, JI G X. Spectral Properties of the Generalized Aluthge Transform[J]. Acta Analysis Functionalis Applicata, 2008, 10(2):116-122.

    Google Scholar

    [16] 刘秀梅, 杨新兵.关于广义Aluthge变换的数值域[J].纯粹数学与应用数学, 2010, 26(1):111-114. doi: 10.3969/j.issn.1008-5513.2010.01.019

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(742) PDF downloads(133) Cited by(0)

Access History

Other Articles By Authors

Maximal Numerical Range of the Generalized Aluthge Transform

Abstract: Let H be an infinite separable Hilbert space and A be a bounded linear operator on H. The generalized Aluthge transform and the generalized*-Aluthge transform of A are denoted by $\widetilde{\boldsymbol{A}}^{t}$ and $\widetilde{\boldsymbol{A}}^{t(*)}$, respectively, where t∈(0, 1). By the method of operational partitioning, for any complex λ, the norm and maximal numerical range of $\widetilde{\boldsymbol{A}}^{t}-\lambda$ and $\widetilde{\boldsymbol{A}}^{t(*)}-\lambda$ are considered, and the relationship between the norm of the inner derivation of $\widetilde{\boldsymbol{A}}^{t}$ and $\widetilde{\boldsymbol{A}}^{t(*)}$ is given.

  • H为复可分无限维Hilbert空间,B(H)为H上全体有界线性算子. N(A),ρ(A),σ(A),σp(A),W(A),R(A)分别表示B(H)中算子A的核、豫解集、谱、点谱,数值域以及值域. MM分别表示M的范数闭包及闭凸包.

    AB(H),A=U|A|是它的极分解,其中U是具有起始空间$\overline{R(|\boldsymbol{A}|)}$和终空间$\overline{R({\boldsymbol A})}$的部分等距算子,$|\boldsymbol{A}|=\left(\boldsymbol{A}^{*} \boldsymbol{A}\right)^{\frac{1}{2}}$.文献[1]定义了两个新算子:

    分别称为A的Aluthge变换及*-Aluthge变换.之后这两个算子被进一步推广,即对任意的t∈(0,1),$\widetilde{\boldsymbol{A}}^{t}=|\boldsymbol{A}|^{t} \boldsymbol{U}|\boldsymbol{A}|^{1-t}, \widetilde{\boldsymbol{A}}^{t(*)}=\left|\boldsymbol{A}^{*}\right|^{t} \boldsymbol{U}\left|\boldsymbol{A}^{*}\right|^{1-t}$分别称为A的广义Aluthge变换及广义*-Aluthge变换[2].

    近年来,关于算子$\widetilde{\boldsymbol A}$$\widetilde{\boldsymbol{A}}^{(*)}$的研究涉及到各种谱、不变子空间、数值域、本性数值域[3-9]、平移性质等[10].文献[11]研究了$\widetilde{\boldsymbol{A}}$$\widetilde{\boldsymbol{A}}^{(*)}$的数值域,证明了$\overline{W(\tilde{\boldsymbol{A}})}=\overline{W\left(\widetilde{\boldsymbol{A}}^{(*)}\right)}$.文献[[12]进一步证明了$W(\widetilde{\boldsymbol{A}})=$$W\left(\widetilde{\boldsymbol{A}}^{(*)}\right)$依然成立.文献[13]着重对$\widetilde{\boldsymbol{A}}$$\widetilde{\boldsymbol{A}}^{(*)}$的本性数值域、极大数值域展开讨论,给出$W_{0}(\widetilde{ \boldsymbol A}-\lambda)=$$W_{0}\left(\widetilde{\boldsymbol{A}}^{(*)}-\lambda\right)$对任意复数λ成立,其中W0(A)表示A的极大数值域.本文主要借助算子分块的技巧,利用逼近思想研究了广义Aluthge变换的极大数值域,证明了对任意的t∈(0,1),$W_{0}\left(\widetilde{\boldsymbol{A}}^{t}-\lambda\right)=W_{0}\left(\widetilde{\boldsymbol{A}}^{t(*)}-\lambda\right)$成立,将文献[13]的结论进行了推广,并给出$\widetilde{\boldsymbol{A}}^{t}-\lambda$$\widetilde{\boldsymbol{A}}^{(t *)}-\lambda$的范数以及$\widetilde{\boldsymbol{A}}^{t}$$\widetilde{\boldsymbol{A}}^{t(*)}$内导子的关系.

    定义1[14]   设AB(H),$W_{0}(\boldsymbol{A})=\{\lambda \in \mathbb{C}$:存在单位向量列{xn}⊂H,且‖Ax‖→‖A‖,(Axnxn)→λ}称为算子A的极大数值域.

    文献[14]证明了W0(A)是复平面上的非空闭凸集,且对任意复数λ1λ2,有

    引理1[13]   设TB(H),MH的闭子空间,$H=M \oplus M^{\perp}, \boldsymbol{T}=\left(\begin{array}{ll}{\boldsymbol{A}} & {\boldsymbol{0}} \\ {\boldsymbol{0}} & {\boldsymbol{B}}\end{array}\right)$,则:

    (ⅰ)若‖A‖=‖B‖,则W0(T)=[W0(A)∪W0(B)]

    (ⅱ)若‖A‖>‖B‖,则W0(T)=W0(A).

    引理2[15]   设AB(H),对任意t∈(0,1),有$\sigma(\boldsymbol{A})=\sigma\left(\widetilde{\boldsymbol{A}}^{t}\right)=\sigma\left(\widetilde{\boldsymbol{A}}^{t(*)}\right)$.

    引理3[16]   设UB(H)中的非酉等距算子,${D}=\{\lambda \in \mathbb{C} :|\lambda| \leqslant 1\}$为复平面上的单位圆盘,则$D \subseteq \sigma_{p}\left(\boldsymbol{U}^{*}\right)$.

    A=U|A|为B(H)中算子A的极分解,则在空间分解H=N(A)⊕N(A)下有:

    t∈(0,1),容易计算$\widetilde{\boldsymbol{A}}^{t}=\left(\begin{array}{ll}{\boldsymbol{0}} & {\boldsymbol{0}} \\ {\boldsymbol{0}} & {\boldsymbol{X}}\end{array}\right)$,其中$\boldsymbol{X}=\left(\boldsymbol{B}^{*} \boldsymbol{B}+\boldsymbol{C}^{*} \boldsymbol{C}\right)^{\frac{1}{2}} \boldsymbol{U}_{2}\left(\boldsymbol{B}^{*} \boldsymbol{B}+\boldsymbol{C}^{*} \boldsymbol{C}\right)^{\frac{1-t}{2}}$N(A)上的有界线性算子.

    注意到U为部分等距算子,故存在U0N(A)N(A*)为酉算子,使得

    $\widetilde{\boldsymbol{A}}^{t(*)}=\boldsymbol{U} \widetilde{\boldsymbol{A}}^{t} \boldsymbol{U}^{*}=\left(\begin{array}{ll}{\boldsymbol{0}} & {\boldsymbol{0}} \\ {\boldsymbol{0}} & {\boldsymbol{Y}}\end{array}\right)$,其中Y=U0XU0*.

    定理1   设AB(H),则对任意复数λ$\left\|\widetilde{\boldsymbol{A}}^{t}-\lambda\right\|=\left\|\widetilde{\boldsymbol{A}}^{t(*)}-\lambda\right\|$.

      对任意复数λ,由于:

    Y-λX-λ酉等价.以下我们分情形来讨论.

    情形1   若N(A)≠{0},N(A*)≠{0},则

    情形2   若N(A)={0},N(A*)={0},则$\left\|\widetilde{\boldsymbol{A}}^{t}-\lambda\right\|=\|\boldsymbol{X}-\lambda\|=\|\boldsymbol{Y}-\lambda\|=\left\|\widetilde{\boldsymbol{A}}^{t(*)}-\lambda\right\|$.

    情形3   若N(A)={0},N(A*)≠{0},则$\left\|\widetilde{\boldsymbol{A}}^{t}-\lambda\right\|=\|\boldsymbol{X}-\lambda\|=\|\boldsymbol{Y}-\lambda\|$.

    以下只需要证明‖Y-λ‖|λ|即可.

    若‖Y-λ‖<|λ|,则-λρ(Y-λ),Y是可逆的,故X可逆,这样就有$\widetilde{\boldsymbol{A}}^{t}=\boldsymbol{X}$可逆.由引理2知AA*均可逆,这显然与N(A*)≠{0}矛盾.

    情形4   若N(A)≠{0},N(A*)={0},与情形3类似.

    定理2   设AB(H),则对任意复数λ,有$W_{0}\left(\widetilde{\boldsymbol{A}}^{t}-\lambda\right)=W_{0}\left(\widetilde{\boldsymbol{A}}^{t(*)}-\lambda\right)$.

      由于$\widetilde{\boldsymbol{A}}^{t}-\lambda=\left(\begin{array}{cc}{-\lambda} & {\boldsymbol{0}} \\ {\boldsymbol{0}} & {\boldsymbol{X}-\lambda}\end{array}\right): N(\boldsymbol{A}) \oplus N(\boldsymbol{A})^{\perp}$,而当H=N(A*)⊕N(A*)时,有

    其中Y-λX-λ酉等价.不妨先假设$t \in\left(0, \frac{1}{2}\right]$,我们分情况讨论.

    情形1   N(A)={0},N(A*)={0}.由引理1知

    情形2   N(A)≠{0},N(A*)≠{0}.

    若‖X-λ‖=‖Y-λ‖=|λ|,则

    若‖X-λ‖=‖Y-λ‖>|λ|,则

    若‖X-λ‖=‖Y-λ‖<|λ|,则

    情形3   N(A)={0},N(A*)≠{0}.此时$\widetilde{\boldsymbol{A}}^{t}-\lambda=\boldsymbol{X}-\lambda, W_{0}\left(\widetilde{\boldsymbol{A}}^{t}-\lambda\right)=W_{0}(\boldsymbol{X}-\lambda)$.

    $\widetilde{\boldsymbol{A}}^{t(*)}-\lambda=\left(\begin{array}{cc}{-\lambda} & {\boldsymbol{0}} \\ {\boldsymbol{0}} & {\boldsymbol{Y}-\lambda}\end{array}\right):N\left(\boldsymbol{A}^{*}\right) \oplus N\left(\boldsymbol{A}^{*}\right)^{\perp}$,以下只要证明‖Y-λ‖>|λ|即可.

    如果‖Y-λ‖<|λ|,则-λρ(Y-λ),即Y可逆.而XY酉等价,故X可逆,因此$\widetilde{\boldsymbol{A}}^{t}=\boldsymbol{X}$可逆.由引理2知AA*均可逆,这与N(A*)≠{0}矛盾.

    如果‖Y-λ‖=|λ|,由于对任意非零复数λ$(\lambda \widetilde{\boldsymbol{A}})^{t}=\lambda \widetilde{\boldsymbol{A}}^{t}$,不失一般性,假设λ=1,显然

    则对任意单位向量xH,有$\left\|\left\langle\left(\widetilde{\boldsymbol{A}}^{t}-1\right) \boldsymbol{x}, \boldsymbol{x}\right\rangle\right\| \leqslant 1$,即

    注意到U为非酉等距算子,由引理3知单位圆盘D中的非零点均为U*的特征值.令μ∈(-1,0),y0为单位向量且满足U*y0=μy0.由于|A|t有稠值域,故存在{yn}⊂H,有$\lim\limits _{n \rightarrow \infty}|\boldsymbol{A}|^{t} \boldsymbol{y}_{n}=\boldsymbol{y}_{0}$成立,故

    而事实上,由(1)式及极限的性质有

    这显然矛盾,因此‖Y-λ‖=|λ|不成立.

    特别地,若λ=0,显然$W_{0}\left(\widetilde{\boldsymbol{A}}^{t}\right)=W_{0}(\boldsymbol{X})=W_{0}(\boldsymbol{Y})=W_{0}\left(\widetilde{\boldsymbol{A}}^{t(*)}\right)$.因此对任意复数λ,有

    情形4   N(A)≠{0},N(A*)={0}.则$\widetilde{\boldsymbol{A}}^{t(*)}-\lambda=\boldsymbol{Y}-\lambda, W_{0}\left(\widetilde{\boldsymbol{A}}^{t(*)}-\lambda\right)=W_{0}(\boldsymbol{Y}-\lambda)$.此时

    只要证明‖X-λ‖>|λ|即可.

    与情形3类似可知‖X-λ‖<|λ|不成立.以下只需证明‖X-λ‖≠|λ|即可.

    如果‖X-λ‖=|λ|,由于$(\lambda \widetilde{\boldsymbol{A}})^{t(*)}=\lambda \widetilde{\boldsymbol{A}}^{t(*)}$对于任意非零复数λ成立,故假设λ=1,显然

    则对任意单位向量xH,有$\left\|\left\langle\left(\widetilde{\boldsymbol{A}}^{t(*)}-1\right) \boldsymbol{x}, \boldsymbol{x}\right\rangle\right\| \leqslant 1$,即

    由于此时U为非酉余等距算子,故单位圆盘D中的非零点均为U的特征值.令μ∈(-1,0),y0为单位向量且满足Uy0=μy0.注意到此时|A*|1-2t有稠值域,故存在{yn}⊂H,使得$\lim\limits _{n \rightarrow \infty}\left|\boldsymbol{A}^{*} \quad\right|^{1-2 t} {\boldsymbol y}_{n}={\boldsymbol y}_{0}$,故

    也就有

    $\lim\limits _{n \rightarrow \infty}\left\|\left|\boldsymbol{A}^{*}\right|^{\frac{1-2 t}{2}} \boldsymbol{y}_{n}\right\|=0$, 则$\lim\limits _{n \rightarrow \infty}\left\|\quad\left|\boldsymbol{A}^{*}\right|^{1-2 t} \boldsymbol{y}_{n}\right\|=0$.但事实上

    显然矛盾,因此$\lim\limits _{n \rightarrow \infty}\left\|\left|\boldsymbol{A}^{*}\right|^{\frac{1-2 t}{2}} \boldsymbol{y}_{n}\right\| \neq 0$,故

    则一定存在自然数N0,当nN0时,〈U|A*|1-2tynyn〉<0.

    又由于|A*|t有稠值域,因此对于上述nN0的每一个yn,存在向量列{xnm}m满足$\lim\limits _{m \rightarrow \infty}\left|\boldsymbol{A}^{*}\right|^{t} \boldsymbol{x}_{n_{m}}=\boldsymbol{y}_{n}$,则

    也就有

    这显然与(2)式矛盾.因此‖x-λ‖≠|λ|.

    特别地,若λ=0,显然$W_{0}\left(\widetilde{\boldsymbol{A}}^{t(*)}\right)=W_{0}(\boldsymbol{Y})=W_{0}(\boldsymbol{X})=W_{0}\left(\widetilde{\boldsymbol{A}}^{t}\right)$.因此当N(T)≠{0},N(T*)={0}时,有$W_{0}\left(\widetilde{\boldsymbol{A}}^{t}-\lambda\right)=W_{0}\left(\widetilde{\boldsymbol{A}}^{t(*)}-\lambda\right)$成立.

    注意到当$t \in\left(\frac{1}{2}, 1\right)$时,有:

    因此对$t \in\left(\frac{1}{2}, 1\right)$,依然有$W_{0}\left(\widetilde{\boldsymbol{A}}^{t}-\lambda\right)=W_{0}\left(\widetilde{A}^{t(*)}-\lambda\right)$成立.

    对算子AB(H),δA(T)=AT-TA称为算子A的内导子,其中TB(H)为任意算子,文献[14]定义了A的内导子的范数为‖δA‖=inf{‖T-λ‖:λ$\mathbb{C}$}.由定理1,可以得到$\widetilde{\boldsymbol{A}}^{t}$$\widetilde{\boldsymbol{A}}^{t(*)}$内导子范数的关系.

    推论1   设AB(H),对任意t∈(0,1),有$\left\|\delta_{\widetilde{\boldsymbol{A}}^{t}}\right\|=\left\|\delta_{\widetilde{\boldsymbol{A}}^{t(*)}}\right\|$.

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return