Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 43 Issue 2
Article Contents

LIU Yin, WANG Ding. Edge-Transitive Cyclic Covers of the Complete Graph K2n[J]. Journal of Southwest University Natural Science Edition, 2021, 43(2): 90-94. doi: 10.13718/j.cnki.xdzk.2021.02.012
Citation: LIU Yin, WANG Ding. Edge-Transitive Cyclic Covers of the Complete Graph K2n[J]. Journal of Southwest University Natural Science Edition, 2021, 43(2): 90-94. doi: 10.13718/j.cnki.xdzk.2021.02.012

Edge-Transitive Cyclic Covers of the Complete Graph K2n

More Information
  • Received Date: 17/06/2020
    Available Online: 20/02/2021
  • MSC: O157.5

  • The regular cover of a graph is an important topic in the research of the algebraic graph theory, for regular covers of transitive graphs contain abundant theories and techniques, and the characterization of many transitive graphs can be reduced to the covers of small transitive graphs. Complete graphs, which are typical symmetric graphs, naturally appear in the study of many symmetric graphs as normal quotient graphs. In order to study some important problems about regular covers of transitive graphs with weak symmetry, techniques in the finite group theory and some properties of coset graphs are used to characterize the edge-transitive cyclic covers of complete graphs of order 2n, and with the method of taking normal quotient graphs of the covering graphs, the edge-transitive cyclic covers of two classes of complete graphs are constructed. As a result, some new families of graphs are found.
  • 加载中
  • [1] MASON D R. On Coverings of a Finite Group by Abelian Subgroups[J]. Math Proc Camb Phil Soc, 1978, 83(2): 205-209. doi: 10.1017/S0305004100054463

    CrossRef Google Scholar

    [2] BHARGAVA M. Groups as Unions of Proper Subgroups[J]. The American Mathematical Monthly, 2009, 116 (5): 413-422. doi: 10.1080/00029890.2009.11920955

    CrossRef Google Scholar

    [3] 伍涛, 曹洪平.某些K3-单群的交换子群覆盖[J].西南大学学报(自然科学版), 2017, 39(2): 40-44.

    Google Scholar

    [4] 郭红如, 吕恒.可以表示成3个或4个交换子群并的群[J].西南大学学报(自然科学版), 2017, 39(8): 97-100.

    Google Scholar

    [5] 陈梦, 朱华, 刘正龙. K3-单群的新刻画[J].西南师范大学学报(自然科学版), 2019, 44(6): 1-4.

    Google Scholar

    [6] MALNIĈ A, NEDELA R, ŠKOVIERA M. Lifting Graph Automorphisms by Voltage Assignments[J]. European Journal of Combinatorics, 2000, 21(7): 927-947. doi: 10.1006/eujc.2000.0390

    CrossRef Google Scholar

    [7] MALNIĈ A, MARUŠIC D, POTOĈNIK P. Elementary Abelian Covers of Graphs[J]. Journal of Algebraic Combinatorics, 2004, 20(1): 71-97. doi: 10.1023/B:JACO.0000047294.42633.25

    CrossRef Google Scholar

    [8] MALNIĈ A, MARUŠIĈ D, MIKLAVIĈ S, et al. Semisymmetric Elementary Abelian Covers of the Möbius-Kantor Graph[J]. Discrete Mathematics, 2007, 307(17-18): 2156-2175. doi: 10.1016/j.disc.2006.10.008

    CrossRef Google Scholar

    [9] CONDER M D E, MA J C. Arc-Transitive Abelian Regular Covers of Cubic Graphs[J]. Journal of Algebra, 2013, 387: 215-242. doi: 10.1016/j.jalgebra.2013.02.035

    CrossRef Google Scholar

    [10] CONDER M D E, MA J C. Arc-Transitive Abelian Regular Covers of the Heawood Graph[J]. Journal of Algebra, 2013, 387: 243-267. doi: 10.1016/j.jalgebra.2013.01.041

    CrossRef Google Scholar

    [11] DU S F, MARUŠIĈ D, WALLER A O. On 2-Arc-Transitive Covers of Complete Graphs[J]. Journal of Combinatorial Theory(Series B), 1998, 74(2): 276-290. doi: 10.1006/jctb.1998.1847

    CrossRef Google Scholar

    [12] DU S F, KWAK J H, XU M Y. 2-Arc-Transitive Regular Covers of Complete Graphs Having the Covering Transformation Group Zp3[J]. Journal of Combinatorial Theory(Series B), 2005, 93(1): 73-93. doi: 10.1016/j.jctb.2003.09.003

    CrossRef Google Scholar

    [13] FENG Y Q, KWAK J H. Cubic Symmetric Graphs of Order a Small Number Times a Prime or a Prime Square[J]. Journal of Combinatorial Theory(Series B), 2007, 97(4): 627-646. doi: 10.1016/j.jctb.2006.11.001

    CrossRef Google Scholar

    [14] 刘寅, 刘哲, 杨桥艳, 等. K8的弧传递循环正则覆盖[J].云南大学学报(自然科学版), 2014, 36(3): 305-309.

    Google Scholar

    [15] LORIMER P. Vertex-Transitive Graphs: Symmetric Graphs of Prime Valency[J]. Journal of Graph Theory, 1984, 8(1): 55-68. doi: 10.1002/jgt.3190080107

    CrossRef Google Scholar

    [16] LI C H, PAN J M. Finite 2-Arc-Transitive Abelian Cayley Graphs[J]. European Journal of Combinatorics, 2008, 29(1): 148-158. doi: 10.1016/j.ejc.2006.12.001

    CrossRef Google Scholar

    [17] GURALNIC K R M. Subgroups of Prime Power Index in a Simple Group[J]. Journal of Algebra, 1983, 81(2): 304-311. doi: 10.1016/0021-8693(83)90190-4

    CrossRef Google Scholar

    [18] GORENSTEIN D. Finite Simple Groups[M]. New York: Plenum, 1982.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(2020) PDF downloads(213) Cited by(0)

Access History

Other Articles By Authors

Edge-Transitive Cyclic Covers of the Complete Graph K2n

Abstract: The regular cover of a graph is an important topic in the research of the algebraic graph theory, for regular covers of transitive graphs contain abundant theories and techniques, and the characterization of many transitive graphs can be reduced to the covers of small transitive graphs. Complete graphs, which are typical symmetric graphs, naturally appear in the study of many symmetric graphs as normal quotient graphs. In order to study some important problems about regular covers of transitive graphs with weak symmetry, techniques in the finite group theory and some properties of coset graphs are used to characterize the edge-transitive cyclic covers of complete graphs of order 2n, and with the method of taking normal quotient graphs of the covering graphs, the edge-transitive cyclic covers of two classes of complete graphs are constructed. As a result, some new families of graphs are found.

  • 在群论中,有限群被其真子群覆盖的问题是一个有趣的课题,并有丰富的结论[1-5].在组合数学中,图的覆盖问题也是一个热门课题,覆盖图的各种结构在代数图论和拓扑图论中都有重要作用.文献[6-8]建立了图的覆盖的一些基本理论,并成功地应用于分类某些小度数的对称图.文献[9-10]利用计算机理论,分别对3度图和Heawood图的弧传递交换正则覆盖进行了刻画.特别地,完全图作为一类典型的对称图,常常作为正规商图出现在大量的对称图的研究中,其覆盖问题也受到了众多的关注.文献[11-12]确定了完全图的2-弧传递循环覆盖和初等交换正则覆盖.文献[13]在对一类立方图的研究中也刻画了完全图K4s-正则循环覆盖和初等交换覆盖.近年来,文献[14]利用电压赋值的方法刻画了完全图K8的素数阶弧传递循环正则覆盖,其为K8的标准双覆盖K8,8-8K2.本文将图的顶点数8推广到一般的情况,主要考虑了完全图K2n(n≥3)的边传递循环正则覆盖,拓展了文献[14]的结果,并得到了一些新的图类.

1.   预备知识
  • 若无特殊说明,本文提到的图都是度数大于2的无向且连通的单图.对于正整数n,用Cn表示n阶循环群.对于两个群NH,用N×H表示NH的直积,用NH表示NH的中心积,用N·H表示NH的扩张,当这个扩张可裂时,用N:H表示.

    引理1[15]  设Γ=Cos(GHHgH),则下列结论成立:

    (ⅰ) Γ为连通图当且仅当〈Hg〉=G

    (ⅱ) Γ为无向图当且仅当g2H,此时Γ的度数为|H:HHg|.

    反之,每个G-弧传递图都同构于陪集图Cos(GGαGαhGα),其中hG的2-元素,且h2Gα,〈Gαh〉=G.

    引理2[16]  设ΓG-点传递局部本原图,NG上至少有3个轨道,则:

    (ⅰ) N上半正则,G/N≤AutΓNΓNG/N-局部本原图,且ΓΓNN-覆盖;

    (ⅱ) Gα≌(G/N)δ,其中αδN.

    引理3[17]  设H为非交换单群T的指数为2n的真子群,则TA2nHA2n-1,或者T≌PSL(dp),HT的极大抛物子群且 $\frac{{{q}^{d}}-1}{q-1}={{2}^{n}}$ .

    引理4  设qdn均为正整数,若$\frac{{{q}^{d}}-1}{q-1}={{2}^{n}}$,则d必为素数.

      假设d不为素数,则d可表示为d=d1d2,其中d1为正整数,d2为素数.已知

    则存在正整数e1e2n,使得

    显然2e1|(qd1-1),(qd1-1)|(qd1f-1)(f≥1),所以2e1|(qd1f-1),即存在整数a,使得qd1f=2e1a+1.故存在整数a1a2,…,ad2-1,使得

    又因为d2为素数,所以d2=2,e1=1.于是1+q+…+qd1-1=2e1=2,从而d1=2,q=1,这与q≠1矛盾.故d为素数.

    引理5[18]  设T=PSL(dq),若Mult(T)≠C(dq-1),则Mult(T)的取值情况为表 1所示.

2.   主要结论
  • 构造1  假设2n-1为素数,m=2km,其中0≤k≤1,m|(2n-1-1).设K=〈a〉≌CmT=PSL(2,2n-1),〈bc〉=〈b〉:〈c〉≌C2n-1:C2n-1-1T的极大抛物子群.则正规化子NT(〈c〉)≌D2n-2.取NT(〈c〉)的2阶元记为g.令

    引理6  构造1中的图Δ为完全图K2nK×T-弧传递Cm-覆盖.

      已知〈bc〉为T的极大抛物子群且g ∉〈bc〉,则〈bcg〉=T.令X=〈E,(amg)〉,则由T为非交换单群可知1×T=1×TX,其中TX分别为TX的换位子群.特别地,因为(1,g-1),(1,c-1)∈X,所以(am,1),(a2k,1)∈X,从而X=K×T,而Δ为连通图,由EC2n-1:C2n-1-1可知||=|K×T:E|=2nm.进一步地,由gNT(〈c〉)可知

    从而Δ为2nm阶2n-1度K×T-弧传递图.

    K×1=N,则NCmK×T的正规子群.已知E中任意元e都可表示为(a2ibjci)的形式.若eN,则bjci=1,于是bj=ci=1,从而2n-1|ia2i=1.因此e=1,NE=1.又因为N半正则且在上有2n(>3)个轨道,由引理2可知,ΔΔNCm-覆盖,其中ΔNK2n.

    构造2  假设2n-1为素数,m=2km,其中1≤k≤2,m|(2n-1-1).设K=〈a〉≌CmS=SL(2,2n-1),使得KS为中心积且KSC2.则存在元素bcS,2阶元gNS(〈c〉),使得

    引理7  构造2中的图Λ为完全图K2nKS-弧传递Cm-覆盖.

      类似于引理6的证明,易知KF=1且Λ为2nm阶2n-1度KS-弧传递图.由于K上有2n(>3)个轨道,由引理2知,ΛΛK的弧传递Cm-覆盖.而ΛK为2n个点上的2n-1度图,所以ΛKK2n.

    定理1  设图Γ为完全图K2n的边传递Cm-覆盖,其中n≥3,则Γ为下列图之一:

    (ⅰ) ΓK2n,2n-2nK2为2-弧传递图,且m=2;

    (ⅱ) ΓK2n的4-重覆盖,且m=4;

    (ⅲ) ΓΔ(见构造1)为Cm×PSL(2,2n-1)-局部本原图,且m|(2n-2);

    (ⅳ) ΓΛ(见构造2)为Cm◦PSL(2,2n-1)-局部本原图,此时m为偶数且m|(2n+1-4);

    (ⅴ) ΓCm×PSL(dq)-弧传递图,其中m|2(d-1,q-1),d为大于2的素数,$\left( d, q-1 \right)=1, \frac{{{q}^{d}}-1}{q-1}={{2}^{n}}$

    (ⅵ) Γ为正规边传递凯莱图.

      已知Γ为完全图K2n的边传递Cm-覆盖,不妨设XΓ的保纤群,K为覆盖变换群,则X作用在Γ上边传递,且K=〈a〉≌CmX的正规子群,Y=X/KΣ=K2n上边传递.

    Y上3-传递,则Σ为(Y,2)-弧传递图,从而ΓΣ的2-弧传递Cm-覆盖.由文献[11]的定理1.1知,KC2ΓK2n,2n-2nK2,或KC4ΓK2n的4-重覆盖.

    Y上不是3-传递的,则由YΣ上边传递可知,Y作用在上2-齐次,从而为本原群.因此Y为几乎单型本原群或者仿射型本原群.以下设Y的基柱为Tαδ.

    Y为几乎单型本原群时,T上传递.显然|T:Tδ|=2n,因此(TTδ)满足引理3的条件.若T=A2n,则Ts-传递的(s≥3),这与Y非3-传递矛盾.故T=PSL(dp)且$\frac{{{q}^{d}}-1}{q-1}={{2}^{n}}$.此时,T上2-传递,进而在Σ上弧传递,于是G=K·TXΓ上弧传递.由于T上传递,所以T上的点稳定子共轭.不失一般性,不妨设δ=αK,则

    Γ的顶点个数可知

    于是|Gα|=|Tδ|,从而Gα=Tδ.当T=PSL(dq)且满足条件 $\frac{{{q}^{d}}-1}{q-1}={{2}^{n}}$ 时,由引理4知d为素数.以下对Mult(T)分3种情形进行分析:

    情形1  Mult(T)≌C(dq-1)d|(q-1).

    d|(q-1)可知,d|(q2-1),…,d|(qd-1-1),因此

    注意到

    所以d|2n,从而d=2.于是q=2n-1.故T=PSL(2,2n-1).由G=K·T为中心扩张且Mult(T)≌C2G≌PSL(2,2n-1),SL(2,2n-1).因为

    所以Gα=1或GαC2n-1:Cr,其中r|(2n-1-1).若Gα=1,则GαK/(KG)为循环群,这与Gα亚循环矛盾.因此GαC2n-1:Cr.

    情形1.1  当G≌PSL(2,2n-1)时,G=K×G.因为||=2nm,计算可知

    所以G上有$\frac{mr}{{{2}^{n-1}}-1}$个轨道.若$\frac{mr}{{{2}^{n-1}}-1}\ge 3$,则ΓGG/G-局部本原图,这与G/G为交换群矛盾.因此$\frac{mr}{{{2}^{n-1}}-1}=1, 2$.设m=2im,其中i=0,1,m|(2n-1-1).因为(m,2n-1)=1,所以G中每个2n-1阶元素都可以表示为(1,b)的形式,每个2n-1-1阶元都可以表示为(a2ikc)的形式,其中bcGk|m.于是Gα=〈(1,b),(a2ikc)〉.由于(a2ikc)|c|=(a2ik|c|,1)∈KGα=1,所以|a2ik||c|,从而|c|=2n-1-1.取G中的2-元素g,则G中的2-元素可以表示为(ajmg),其中j=0,1.设Γ=Cos(GGαGα(ajmg)Gα),由Γ的连通性知,〈Gα,(ajmg)〉=G,所以G=〈bcg〉,〈a2ikajm〉=〈a〉,从而k=j=1.则ΓΔ为完全图K2nG-弧传递Cm-覆盖.

    情形1.2  当G≌SL(2,2n-1)时,G=KG,其中KGC2.计算可得

    所以G上有$\frac{mr}{{{2}^{n}}-2}$个轨道.若$\frac{mr}{{{2}^{n}}-2}\ge 3$,则ΓGG/G-局部本原图,与G/G为交换群矛盾.因此$\frac{mr}{{{2}^{n}}-2}=1, 2$.设m=2lm,其中l=1,2,m|(2n-1-1). G中每个2-元素都可以表示为asmh的形式,其中s=0,1,2,hG的2-元素.根据引理1,不妨设Γ=Cos(GGαGα(asmh)Gα).类似于情形1.1的分析,易证s=1,ΓΛ为完全图K2nG-弧传递Cm-覆盖.

    情形2  Mult(T)≌C(dq-1),且d不整除q-1.

    因为d为素数,所以(dq-1)=1,从而C(dq-1)=1,即Mult(T)=1.于是GTG=K×GCm×PSL(dq),且ΓG-弧传递图.若d=2,则${{2}^{n}}=\frac{{{q}^{d}}-1}{q-1}=q+1$,于是q-1=2n-2,这与d不整除q-1矛盾.故d≥3.

    假设G上至少有3个轨道,则ΓGG/P-弧传递图,其中PG作用在G-轨道上的核,这与G/GK为循环群矛盾.故G上最多有2个轨道.于是Gα/GαK/(KG)=K为循环群,而|G:Gα|=|G:Gα|,2|G:Gα|,所以|Gα:Gα|=m$\frac{m}{2}$,从而m|2(d-1,q-1).

    情形3  Mult(T)≠C(dq-1).

    由引理5可知,满足条件$\frac{{{q}^{d}}-1}{q-1}={{2}^{n}}$的Mult(T)不存在,从而图Γ不存在.

    Y为仿射型本原群时,Y=C2nΣT上的Y-正规边传递凯莱图,从而ΓK·T上的X-正规边传递凯莱图.

Table (1) Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return