-
开放科学(资源服务)标志码(OSID):
-
多属性群决策[1](MAGDM)作为决策领域的一个重要分支,是多个专家应用决策方法从含有多个属性的备选方案中择优的过程. 在实际应用中,由于现实问题的不确定性以及决策者的偏好差异,方案的评价往往呈现多元化,使得最优方案的选取较为困难. 因此,在多属性群决策问题中,先将多元化的评价信息进行集结,再选取最优方案的决策方法成为了研究者们的研究热点.
文献[2]提出了模糊集(FS)的概念,其引入的隶属度在刻画事物确定度方面具有优越性,使得模糊集被广泛应用于不确定问题中. 考虑到单一值刻画复杂问题的局限,文献[3]提出了犹豫模糊集(HFS)的概念,通过使用多个可能的隶属度来完整描述评价信息,随后犹豫模糊集上的运算[4]、距离测度[5]及相关系数的计算[6]等相继被研究. 为了描述信息的不确定性,文献[7]提出了区间模糊集(IVFS)的概念,将隶属度拓展为区间形式,吸引了学者们的广泛研究[8-12]. 文献[13]等结合犹豫模糊集和区间模糊集,定义了区间犹豫模糊集(IVHFS),其隶属度为所有可能的区间集合,能同时体现决策者的犹豫心理和事物的不确定性. 文献[14-18]等研究了该集合的熵、距离和相似测度.
在决策问题中,有时候不需要对事物的描述进行量化,或者事物本身就很难量化,对于这类定性问题用语言术语[19]能更好进行表达. 文献[20]提出了模糊语言集(FLS)的概念. 为了体现决策者的犹豫性,用多个语言术语描述对象,文献[21]定义了犹豫模糊语言术语集(HFLTS). 后来,为了只用一个语言术语去描述对象,文献[22]提出了犹豫模糊语言集(HFLS),用犹豫模糊集描述该语言术语的准确程度. 文献[23]考虑区间形式提出区间犹豫模糊语言集(IVHFLS)的概念,用一个犹豫的模糊区间集来描述语言术语的准确程度:一方面用语言术语描述对象,克服了难以量化的缺陷;另一方面用犹豫的区间描述语言术语的准确程度,同时考虑决策者的犹豫性和不确定性. 关于IVHFLS的集结算子[24]、Shapley模糊测度[25]、TOPSIS方法[26]、语言尺度函数[27]等相继被研究.
上述这些研究中,属性权重或专家权重都是直接给出的,其结果具有较强的主观性. 文献[23]研究了区间犹豫模糊语言集上的多属性决策问题,提出优先加权平均算子和优先加权几何算子,它的属性优先关系由决策者直接给出. 本文研究区间犹豫模糊语言集上属性和专家的优先关系也完全未知的多属性群决策问题,考虑到犹豫度的大小可以反映专家对事物的认知程度,而专家的认知程度又影响专家及属性的优先关系,我们提出基于犹豫度来计算专家及属性的优先关系,保证更熟悉这一属性领域的专家和被认知程度更高的属性在决策中占有更大的权重.
HTML
-
定义1[19](语言术语集) 语言术语集S={si|i=0,1,…,2τ},满足如下运算:
1) 有序性:如果i>j,则si>sj,反之亦然;
2) 逆运算:如果i+j=2τ,则si=neg(sj).
其中语言术语的个数2τ+1称为该术语集的粒度,neg函数见定义5.
定义2[27](语言尺度函数) 语言尺度函数f是语言术语到正实数上的一个映射,定义一个连续语言下标到正实数上的语言尺度函数f:f(si)=εi(i∈[0,2τ],εi∈ℝ+),这里的f为严格单调递增函数且存在反函数,原函数及其反函数表达如下:
函数f随着语言术语从中间扩展到两端,相邻语言下标之间的绝对偏差增大(a为由主观确定的值). 假设指标A比指标B重要得多,且重要性比为m,那么得到
$a=\sqrt[k]{m}$ (其中k表示语言集的粒度). 目前,一般认为m上限为9,所以当语言集粒度为7时,我们可以得到$a=\sqrt[7]{9}\approx 1.37$ . -
定义3[23] 设X={x1,x2,…,xn}为给定对象集,sθ(x)∈S为描述对象x的语言术语,则IVHFLS定义为
这里ΓA(x)是(0,1]上的有限子集的集合,表示对象x满足语言术语sθ(x)的所有可能的模糊区间.
定义4[5] 设A是X={x1,x2,…,xn}上的一个IVHFLS,α=〈xi,sθ(xi),ΓA(xi)〉是其中的一个元素,称为区间犹豫模糊语言数(IVHFLN),为了方便书写,我们也将IVHFLN记为α=〈sθ(α),Γα〉. l(α)表示ΓA(xi)中模糊区间的个数,则IVHFLN和IVHFLS的犹豫度分别定义为:
定义5[23] 设α=〈sθ(α),Γα〉,β=〈sθ(β),Γβ〉是两个IVHFLN,其基本运算如下:
1)
$\operatorname{neg}(\alpha )=\left\langle {{f}^{-1}}\left( f\left( {{s}_{2\tau }} \right)-f\left( {{s}_{\theta (\alpha )}} \right) \right), \bigcup\limits_{r=\left[ {{r}^{l}}, {{r}^{u}} \right]\in {{{\mathit{\Gamma}} }_{a}}}{\left\{ \left[ 1-{{r}^{l}}, 1-{{r}^{u}} \right] \right\}} \right\rangle $ ;2)
$\alpha \ \ \ \oplus \ \ \ \beta \ \ \ =\ \ \ \left\langle {{f}^{-1}}\left( f\left( {{s}_{\theta (\alpha )}} \right)\ \ \ +\ \ \ f\left( {{s}_{\theta (\beta )}} \right) \right) \right., $ $\bigcup\limits_{{{r}_{l}}=\left[ r_{1}^{l}, r_{1}^{u} \right]\in {{{\mathit{\Gamma}} }_{\alpha }}, {{r}_{2}}=\left[ r_{2}^{l}, r_{2}^{u} \right]\in {{{\mathit{\Gamma}} }_{\beta }}}{\left\{ \left[ \frac{f\left( {{s}_{\theta (\alpha )}} \right)r_{1}^{l}+f\left( {{s}_{\theta (\beta )}} \right)r_{2}^{l}}{f\left( {{s}_{\theta (\alpha )}} \right)+f\left( {{s}_{\theta (\beta )}} \right)}, \frac{f\left( {{s}_{\theta (\alpha )}} \right)r_{1}^{u}+f\left( {{s}_{\theta (\beta )}} \right)r_{2}^{u}}{f\left( {{s}_{\theta (\alpha )}} \right)+f\left( {{s}_{\theta (\beta )}} \right)} \right] \right\}}$ ;3)
$\lambda \alpha =\left\langle {{f}^{-1}}\left( \lambda f\left( {{s}_{\theta (\alpha )}} \right) \right), {{{\mathit{\Gamma}} }_{\alpha }} \right\rangle $ ;4)
$\alpha \otimes \beta =\left\langle {{f}^{-1}}\left( f\left( {{s}_{\theta (\alpha )}} \right)f\left( {{s}_{\theta (\beta )}} \right) \right), \right.\left. \bigcup\limits_{{{r}_{1}}=\left[ r_{1}^{l}, r_{1}^{u} \right]\in {{{\mathit{\Gamma}} }_{\alpha }}, {{r}_{2}}=\left[ r_{2}^{l}, r_{2}^{u} \right]\in {{{\mathit{\Gamma}} }_{\beta }}}{\left\{ \left[ r_{1}^{l}r_{2}^{l}, r_{1}^{u}r_{2}^{u} \right] \right\}} \right\rangle $ ;5)
${{\alpha }^{\lambda }}=\left\langle {{f}^{-1}}\left( {{\left( f\left( {{s}_{\theta (\alpha )}} \right) \right)}^{\lambda }} \right), \bigcup\limits_{r=\left[ {{r}^{l}}, {{r}^{u}} \right]\in {{{\mathit{\Gamma}} }_{\alpha }}}{\left\{ \left[ {{\left( {{r}^{l}} \right)}^{\lambda }}, {{\left( {{r}^{u}} \right)}^{\lambda }} \right] \right\}} \right\rangle $ .定义6[23] 设
$\alpha =\left\langle {{s}_{\theta (\alpha )}}, {{{\mathit{\Gamma}} }_{\alpha }} \right\rangle =\left\langle {{s}_{\theta (\alpha )}}, \bigcup\limits_{r=\left[ {{r}^{l}}, {{r}^{u}} \right]\in {{{\mathit{\Gamma}} }_{\alpha }}}{\left\{ \left[ {{r}^{l}}, {{r}^{u}} \right] \right\}} \right\rangle $ 是一个IVHFLN,Er(Γα)为Γα的期望函数,${{E}_{r}}\left({{{\mathit{\Gamma}} }_{\alpha }} \right)=\frac{\sum\limits_{\left[{{r}^{l}}, {{r}^{u}} \right]\in {{{\mathit{\Gamma}} }_{\alpha }}}{\left({{r}^{l}}+{{r}^{u}} \right)}}{2l(\alpha)}, {{D}_{r}}\left({{{\mathit{\Gamma}} }_{\alpha }} \right)$ 为Γα的方差函数,则α的得分函数和精确函数分别定义为
l(α)表示Γα中子集的个数.
设α=〈sθ(α),Γα〉和β=〈sθ(β),Γβ〉是两个IVHFLN,其比较规则如下:
1) 如果E(α)>E(β),则α>β;
2) 如果E(α)=E(β)且D(α)>D(β),则α>β;
3) 如果E(α)=E(β)且D(α)=D(β),则α=β.
1.1. 语言集与语言尺度函数
1.2. 区间犹豫模糊语言集(IVHFLS)
-
IVHFLN的比较是一个重要问题,文献[23]中区间犹豫模糊语言数的比较规则考虑了语言术语的大小和犹豫区间的均值,我们考虑到犹豫度对得分函数的影响定义了新的得分函数,同时考虑了信息的犹豫度、区间期望和语言术语的大小,得到综合得分函数,给出如下定义.
定义7 设
$\alpha =\left\langle {{s}_{\theta (\alpha )}}, {{{\mathit{\Gamma}} }_{\alpha }} \right\rangle =\left\langle {{s}_{\theta (\alpha )}}, \bigcup\limits_{r=\left[ {{r}^{l}}, {{r}^{u}} \right]\in {{{\mathit{\Gamma}} }_{\alpha }}}{\left\{ \left[ {{r}^{l}}, {{r}^{u}} \right] \right\}} \right\rangle $ 是一个IVHFLN,犹豫区间的期望函数为则考虑犹豫度的新的得分函数定义如下:
其中l(α)表示Γα中子集的个数.
-
文献[28]提出优先集结算子,它的核心思想是用优先关系来计算权重,其属性的优先关系由决策者直接给出,本文研究优先关系也未知的问题,根据犹豫度计算优先关系,得到基于犹豫度的优先加权平均算子,并将其应用于区间犹豫模糊语言集,定义区间模糊犹豫语言集基于犹豫度的优先加权平均算子,表达形式如下:
定义8 对n个区间犹豫模糊语言数,根据犹豫度将其划分为具有优先关系的q类Gi(x)(i=1,2,…,q),且满足G1(x)≻G2(x)≻…≻Gq(x),即当j<k时Gk(x)优先于Gj(x)考虑. 令
$\left. {{G}_{i}}(x)=\left\{ {{C}_{i1}}(x) \right., {{C}_{i2}}(x), \cdots , {{C}_{i{{n}_{i}}}}(x) \right\}, n=\sum\limits_{i=1}^{q}{{{n}_{i}}}$ ,则区间犹豫模糊语言集基于犹豫度的优先加权平均(IVHFLHDPWA)算子定义为其中ωi表示类别Gi(x)的权重,由优先关系计算得到,
${\omega _i} = \frac{{{T_i}}}{{\mathop {\mathop \sum \limits^q }\limits_{i = 1} {\kern 1pt} }}{T_i},(i = 1,2, \cdots ,q), $ $ \sum\limits_{i=1}^{q}{{{\omega }_{i}}}=1, {{T}_{1}}=1, {{T}_{i}}={{T}_{i-1}}\max \left\{ E\left( {{C}_{i-1, 1}}(x) \right), E\left( {{C}_{i-1, 2}}(x) \right), \right.$ $\left. \cdots , E\left( {{C}_{i-1, {{n}_{i-1}}}}(x) \right) \right\}(i=2, 3, \cdots , q), E\left( {{C}_{i1}}(x) \right)$ 表示Ci1(x)的得分函数. -
定理1 设有优先关系的q个集合Gi(x)(i=1,2,…,q)为一个IVHFLS,
${{G}_{i}}(x)=\left\{ {{C}_{i1}}(x), {{C}_{i2}}(x), \cdots , \right.\left. {{C}_{i{{n}_{i}}}}(x) \right\}, n=\sum\limits_{i=1}^{q}{{{n}_{i}}}\text{;记}{{C}_{ij}}(x)=\left\langle {{s}_{\theta \left( {{c}_{ij}} \right)}}, {{{\mathit{\Gamma}} }_{{{c}_{ij}}}} \right\rangle $ ,则IVHFLHDPWA算子集结结果仍然为一个IVHFLN,且有如下形式:证 根据定义5中区间犹豫模糊语言数的运算得:
从而
所以
定理2 对n个IVHFLN,基于犹豫度将其划分为具有优先关系的q类Gi(x)(i=1,2,…,q),且满足G1(x)≻G2(x)≻…≻Gq(x),令
我们记
则对任意的r>0,有
证 Cij(x)=〈f-1(rf(sθ(cij))),Γcij〉,一方面,根据公式(8)
另一方面
性质1(幂等性) 对n个区间犹豫模糊语言数αi(i=1,2,…,n),如果对所有i都有αi=α,则IVHFLHDPWA(α1,α2,…,αn)=α.
证 因为每个区间犹豫模糊语言数相等,则它们的优先关系一样,由定义8权重计算方法可知其权重相等,再由定义5中的运算得到:
性质2(交换性) 设有n个区间犹豫模糊语言数αi(i=1,2,…,n),(β1,β2,…,βn)是(α1,α2,…,αn)的任意一个置换,则有IVHFLHDPWA(α1,α2,…,αn)=IVHFLHDPWA(β1,β2,…,βn).
证 对αi的任意一个置换,集结时先根据犹豫度计算出优先关系,处于同一优先级则有相同的权重,因而集结结果与区间犹豫模糊语言数的排列顺序无关.
性质3(有界性) 对一个区间犹豫模糊语言集{α1,α2,…,αn},基于犹豫度划分为具有优先关系的q类,Gi(x)(i = 1,2, …,q),其中
${{G}_{i}}(x)=\left\{ {{C}_{i1}}(x), {{C}_{i2}}(x), \cdots , {{C}_{i{{n}_{i}}}}(x) \right\}, n=\sum\limits_{i=1}^{q}{{{n}_{i}}}$ .令${{\alpha }_{m}}=\underset{i}{\mathop{\min }}\, \left\{ {{\alpha }_{1}}, {{\alpha }_{2}}, \cdots , {{\alpha }_{n}} \right\}, {{\alpha }_{M}}=\underset{i}{\mathop{\max }}\, \left\{ {{\alpha }_{1}}, {{\alpha }_{2}}, \cdots , {{\alpha }_{n}} \right\}$ ,则有αm≤IVHFLHDPWA(α1,α2,…,αn)≤αM.证 由性质1可以得到:
2.1. 基于犹豫度的优先加权平均算子
2.2. 基于犹豫度的优先加权平均算子的性质
-
对一个多属性群决策问题,有m个方案A={A1,A2 …,Am}、n个属性C={C1,C2,…,Cn}和s个专家D={D1,D2,…,Ds},每个专家Dk根据自己的专业知识和偏好关系对每个方案Ai的每个属性Cj进行评价,评价结果用区间犹豫模糊语言数表示,则基于新的得分函数的区间犹豫模糊语言集多属性群决策基本步骤如下:
1) 建立区间犹豫模糊语言群决策矩阵并将其标准化.
用一个IVHFLN表示专家Dk对方案Ai的属性Cj的评价值并记为
$\tilde{h}_{i j}^{k}$ ,这里$\tilde{h}_{i j}^{k}=\left\langle\tilde{s}_{\theta\left(h_{i j}^{k}\right)}, \tilde{{\mathit{\Gamma}}}_{h_{i j}^{k}}\right\rangle$ ,从而s个专家对m个方案的n个属性的评价结果用决策矩阵表示为:由于属性可以分为效益型和成本型,为了便于计算,首先对决策矩阵标准化. 对成本型属性
$h_{ij}^k = {\mathop{\rm neg}\nolimits} \left( {\tilde h_{ij}^k} \right)$ ,对效益型属性$h_{ij}^k = \tilde h_{ij}^k$ ,得到标准化群决策矩阵${\mathit{\boldsymbol{\tilde H}}^k} = {\left( {h_{ij}^k} \right)_{m \times n}}(k = 1, 2, \cdots , s)$ .2) 根据犹豫度计算专家集优先关系.
与传统的给定专家优先关系不同,根据专家对方案属性评价值的犹豫度来得到属性下专家的优先关系,犹豫度越小说明专家在该属性下的认知程度越高,优先级也就越高,每个专家在各属性下的犹豫度由公式(3)得到:
其中:l(hijk)表示Γhikj中子集的个数;k=1,2,…,s;j=1,2,…,n.
3) 集结群决策矩阵.
运用IVHFLHDPWA算子对多个专家的评价信息进行集结,得到一个综合决策矩阵H=(hij)m×n:
4) 根据公式(3)计算犹豫度,进而得到综合决策矩阵在每个方案下的属性优先关系.
其中l(hij)表示Γhij中子集的个数.
5) 集结方案的属性值.
在4)的基础上,基于属性优先关系运用IVHFLHDPWA算子对综合决策矩阵每个方案的属性值进行集结,得到方案的综合评价值,即:
6) 根据公式(6)计算方案Ai的得分值S(hi).
7) 由得分值从大到小对方案进行排序.
-
火灾应急方案的选择是处理突发火灾事故的一项重要工作,能够有效保障生命财产安全. 假设某公司有5个待决策的火灾应急方案{x1,x2,x3,x4,x5},一个有3名专家的决策团队对这5种应急方案进行评估,选出最好的应急方案. 考虑火灾应急的4个主要属性:c1为预测能力;c2为救援能力;c3为响应速度;c4为指挥能力. 每个专家对每种方案的每一个主要属性进行评价,其评价值用区间犹豫模糊语言数表示,其中语言术语采用7值语言集S={s0,s1,…,s6}来刻画[29]. 其具体步骤如下:
1) 3位专家分别对5种火灾应急方案基于4个属性指标进行评价,评价结果见表 1.
因为4个属性指标均为效益属性,所以标准化结果不变.
2) 对于得到的群决策矩阵,由公式(3)计算专家在每个属性下的犹豫度,从而得到专家优先关系见表 2.
3) 基于专家优先关系用IVHFLHDPWA算子集结各专家决策矩阵得到综合决策矩阵(表 3).
4) 根据犹豫度计算综合决策矩阵在每个方案下的属性优先关系,得到的综合决策矩阵属性优先关系从高到低为:指挥能力、响应速度、预测能力、救援能力.
5) 基于属性优先关系运用IVHFLHDPWA算子对综合决策矩阵每个方案的属性值进行集结,得到方案的综合评价值(表 4).
这里,区间数后面的数字表示犹豫集中该区间数的个数.
6) 计算每个方案的得分值(表 5).
7) 由得分值得到方案排序从高到低依次为x5,x4,x3,x2,x1,最优方案为x5.
-
本文提出区间犹豫模糊语言集基于犹豫度的优先加权平均算子来处理专家和属性权重完全未知的多属性群决策问题,让专家在自己熟悉的领域更有决策权. 选取区间犹豫模糊语言集描述决策者对方案的评价,可以同时体现决策者的犹豫心理和对象的不确定性. 与已有的决策方法相比,用定义的基于犹豫度的优先加权平均算子作决策,不仅考虑了犹豫度大小对决策的影响使得结果更加符合决策者心理,而且计算过程简单. 本文所提出的方法也可以运用到工程选址、企业风险投资和绩效评定等其他决策问题中.