[1]
|
ZHENG W B, ZOU Y, HE J J, et al. Global Profiling of LncRNAs-miRNAs-mRNAs Reveals Differential Expression of Coding Genes and Non-Coding RNAs in the Lung of Beagle Dogs at Different Stages of Toxocara Canis Infection[J]. International Journal for Parasitology, 2021, 51(1): 49-61.
Google Scholar
|
[2]
|
WU T, BOWMAN D D. Visceral Larval Migrans of Toxocara Canis and Toxocara Cati in Non-Canidand Non-Felid Hosts[J]. Advances in Parasitology, 2020, 109(1): 63-88.
Google Scholar
|
[3]
|
MA G X, HOLLAND C V, WANG T, et al. Human Toxocariasis[J]. The Lancet Infectious Diseases, 2018, 18(1): e14-e24. doi: 10.1016/S1473-3099(17)30331-6
CrossRef Google Scholar
|
[4]
|
FAKHRI Y, GASSER R B, ROSTAMI A, et al. Toxocara Eggs in Public Places Worldwide-a Systematic Review and Meta-Analysis[J]. Environmental Pollution, 2018, 242(10): 1467-1475.
Google Scholar
|
[5]
|
CHEN J, LIU Q, LIU G H, et al. Toxocariasis: A Silent Threat with a Progressive Public Health Impact[J]. Infectious Diseases of Poverty, 2018, 7(1): 59. doi: 10.1186/s40249-018-0437-0
CrossRef Google Scholar
|
[6]
|
李芳, 陈绍基, 谭纯, 等. 犬弓首蛔虫Tc-PEBP的分子特性及组织表达分析[J]. 西南大学学报(自然科学版), 2022, 44(3): 75-82.
Google Scholar
|
[7]
|
DESPOMMIER D. Toxocariasis: Clinical Aspects, Epidemiology, Medical Ecology, and Molecular Aspects[J]. Clinical Microbiology Reviews, 2003, 16(2): 265-272. doi: 10.1128/CMR.16.2.265-272.2003
CrossRef Google Scholar
|
[8]
|
贾海红, 李冰清. 超氧化物歧化酶翻译后修饰的研究进展[J]. 生物技术通报, 2022, 38(2): 237-244.
Google Scholar
|
[9]
|
黄泳, 杨艺, 赵颖, 等. NEFA对牛骨骼肌细胞线粒体功能及脂肪酸代谢相关基因的影响[J]. 南方农业学报, 2023, 54(7): 2115-2125. doi: 10.3969/j.issn.2095-1191.2023.07.023
CrossRef Google Scholar
|
[10]
|
孙旋辉, 邴旭文, 丁炜东, 等. 高温应激对鳜幼鱼血清生化指标及肝脏SOD基因和热休克蛋白基因表达的影响[J]. 南方农业学报, 2022, 53(12): 3539-3547. doi: 10.3969/j.issn.2095-1191.2022.12.025
CrossRef Google Scholar
|
[11]
|
李爱华, TONGSOO KIM. 猪囊尾蚴铜/锌超氧化物歧化酶(Cu/ZnSOD)基因的克隆和表达[J]. 中国人兽共患病学报, 2006, 22(12): 1124-1128. doi: 10.3969/j.issn.1002-2694.2006.12.010
CrossRef Google Scholar
|
[12]
|
ZHAO H Q, ZHANG R F, YAN X Y, et al. Superoxide Dismutase Nanozymes: An Emerging Star for Anti-Oxidation[J]. Journal of Materials Chemistry B, 2021, 9(35): 6939-6957. doi: 10.1039/D1TB00720C
CrossRef Google Scholar
|
[13]
|
SHENG Y W, ABREU I A, CABELLI D E, et al. Superoxide Dismutases and Superoxide Reductases[J]. Chemical Reviews, 2014, 114(7): 3854-3918.
Google Scholar
|
[14]
|
LALRINKIMA H, RAINA O K, CHANDRA D, et al. Isolation and Characterization of Cu/Zn-Superoxide Dismutase in Fasciola Gigantica[J]. Experimental Parasitology, 2015, 152(7): 1-7.
Google Scholar
|
[15]
|
PRAKASH K, GOYAL M, SONI A, et al. Molecular Cloning and Biochemical Characterization of Iron Superoxide Dismutase from the Rodent Malaria Parasite Plasmodium Vinckei[J]. Parasitology International, 2014, 63(6): 817-825. doi: 10.1016/j.parint.2014.07.004
CrossRef Google Scholar
|
[16]
|
IVANB H, SILVIA P S, SILVIA G. TrypanothioneReductase and Superoxide Dismutase as Current Drug Targets for TrypanosomaCruzi: an Overview of Compounds with Activity AgainstChagas Disease[J]. Current Medicinal Chemistry, 2017, 24(11): 1066-1138.
Google Scholar
|
[17]
|
TAK Y J, PARK J H, RHIM H, et al. ALS-Related Mutant SOD1 Aggregates Interfere with Mitophagy by Sequestering the Autophagy Receptor Optineurin[J]. International Journal of Molecular Sciences, 2020, 21(20): 7525.
Google Scholar
|
[18]
|
YAN Z, SPAULDING H R. Extracellular Superoxide Dismutase, a Molecular Transducer of Health Benefits of Exercise[J]. Redox Biology, 2020, 32(10): 101508.
Google Scholar
|
[19]
|
BASAK D, UDDIN M N, HANCOCK J. The Role of Oxidative Stress and Its Counteractive Utility in Colorectal Cancer (CRC)[J]. Cancers, 2020, 12(11): 3336.
Google Scholar
|
[20]
|
CASE A J, DOMANN F E. Manganese Superoxide Dismutase is Dispensable for Post-Natal Development and Lactation in the Murine Mammary Gland[J]. Free Radical Research, 2012, 46(11): 1361-1368.
Google Scholar
|
[21]
|
COX G M, HARRISON T S, MCDADE H C, et al. Superoxide Dismutase Influences the Virulence of Cryptococcus Neoformans by Affecting Growth within Macrophages[J]. Infection and Immunity, 2003, 71(1): 173-180.
Google Scholar
|
[22]
|
MOUSTAFA A, PERBANDT M, LIEBAU E, et al. Crystal Structure of an Extracellular Superoxide Dismutase from Onchocerca Volvulus and Implications for Parasite-Specific Drug Development[J]. ActaCrystallographica Section F Structural Biology Communications, 2022, 78(6): 232-240.
Google Scholar
|
[23]
|
WONG P C, WAGGONER D, SUBRAMANIAM J R, et al. Copper Chaperone for Superoxide Dismutase is Essential to Activate Mammalian Cu/Zn Superoxide Dismutase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(6): 2886-2891.
Google Scholar
|
[24]
|
BROWN N M, TORRES A S, DOAN P E, et al. Oxygen and the Copper Chaperone CCS Regulate Posttranslational Activation of Cu, Zn Superoxide Dismutase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(15): 5518-5523.
Google Scholar
|
[25]
|
FENG D D, GAO X, KONG W H, et al. An Extracellular Cu/Zn Superoxide Dismutase from Neocaridina Denticulata Sinensis: CDNA Cloning, mRNA Expression and Characterizations of Recombinant Protein[J]. Fish & Shellfish Immunology, 2022, 128(10): 547-556.
Google Scholar
|