[1]
|
SARMAH A K, MEYER M T, BOXALL A B A. A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment[J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026
CrossRef Google Scholar
|
[2]
|
ANDREOZZI R, MAROTTA R, PINTO G, et al. Carbamazepine in Water: Persistence in the Environment, Ozonation Treatment and Preliminary Assessment on Algal Toxicity[J]. Water Research, 2002, 36(11): 2869-2877. doi: 10.1016/S0043-1354(01)00500-0
CrossRef Google Scholar
|
[3]
|
于泳. 农田土壤中农药及抗生素快速筛查技术研究[D]. 北京: 中国农业科学院, 2016.
Google Scholar
|
[4]
|
ASHBOLT N J, AMÉZQUITA A, BACKHAUS T, et al. Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance[J]. Environmental Health Perspectives, 2013, 121(9): 993-1001. doi: 10.1289/ehp.1206316
CrossRef Google Scholar
|
[5]
|
LIN M, WU X, YAN Q, et al. Incidence of Antimicrobial-Resistance Genes and Integrons in Antibiotic-Resistant Bacteria Isolated from Eels and Aquaculture Ponds[J]. Diseases of Aquatic Organisms, 2016, 120(2): 115-123. doi: 10.3354/dao03013
CrossRef Google Scholar
|
[6]
|
QIAN H F, LI J J, PAN X J, et al. Effects of Streptomycin on Growth of Algae Chlorella Vulgaris and Microcystis Aeruginosa[J]. Environmental Toxicology, 2012, 27(4): 229-237. doi: 10.1002/tox.20636
CrossRef Google Scholar
|
[7]
|
孙传范. 微藻水环境修复及研究进展[J]. 中国农业科技导报, 2011, 13(3): 92-96.
Google Scholar
|
[8]
|
ISIDORI M, LAVORGNA M, NARDELLI A, et al. Toxic and Genotoxic Evaluation of Six Antibiotics on Non-Target Organisms[J]. Science of the Total Environment, 2005, 346(1-3): 87-98. doi: 10.1016/j.scitotenv.2004.11.017
CrossRef Google Scholar
|
[9]
|
BEN Y J, FU C X, HU M, et al. Human Health Risk Assessment of Antibiotic Resistance Associated with Antibiotic Residues in the Environment: A Review[J]. Environmental Research, 2019, 169: 483-493. doi: 10.1016/j.envres.2018.11.040
CrossRef Google Scholar
|
[10]
|
THOMPSON A C, SIKOROWSKI P P. Effect of Streptomycin Sulfate on the Chemistry and Growth of Heliothis Virescens[J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1983, 74(2): 255-258. doi: 10.1016/0742-8413(83)90098-1
CrossRef Google Scholar
|
[11]
|
SONG W, KIM Y H, SIM S H, et al. Antibiotic Stress-Induced Modulation of the Endoribonucleolytic Activity of RNase Ⅲ and RNase G Confers Resistance to Aminoglycoside Antibiotics in Escherichia Coli[J]. Nucleic Acids Research, 2014, 42(7): 4669-4681. doi: 10.1093/nar/gku093
CrossRef Google Scholar
|
[12]
|
SCHWARTZBACH S D, SCHIFF J A. Chloroplast and Cytoplasmic Ribosomes of Euglena: Selective Binding of Dihydrostreptomycin to Chloroplast Ribosomes[J]. Journal of Bacteriology, 1974, 120(1): 334-341. doi: 10.1128/jb.120.1.334-341.1974
CrossRef Google Scholar
|
[13]
|
HARRASS M C, KINDIG A C, TAUB F B. Responses of Blue-Green and Green Algae to Streptomycin in Unialgal and Paired Culture[J]. Aquatic Toxicology, 1985, 6(1): 1-11. doi: 10.1016/0166-445X(85)90015-3
CrossRef Google Scholar
|
[14]
|
DAUGHTON C G, TERNES T A. Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change?[J]. Environmental Health Perspectives, 1999, 107(S 6): 907-938.
Google Scholar
|
[15]
|
STRASSER R J, SRIVASTAVA A, TSIMILLI-MICHAEL M. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples[M] //Probing Photosynthesis: Mechanisms Regulation and Adaptation. London: Taylor and Francis Press, 2000.
Google Scholar
|
[16]
|
杜雨欣, 代潇潇, 杨燕君, 等. 不同氮源对淡水多甲藻生长和叶绿素荧光参数的影响[J]. 西南师范大学学报(自然科学版), 2021, 46(10): 38-44.
Google Scholar
|
[17]
|
STRASSER B J, STRASSER R J. Measuring Fast Fluorescence Transients to Address Environmental Questions: The JIP-Test[M] //Photosynthesis: from Light to Biosphere. Dordrecht: Springer Netherlands, 1995: 4869-4872.
Google Scholar
|
[18]
|
ICHIMURA T. Isolation and Culture Methods of Algae[M] //Methods in Phycological Studies. Tokyo: Kyoritu Shuppan, 1979.
Google Scholar
|
[19]
|
BAI F, LIU R, YANG Y J, et al. Dissolved Organic Phosphorus Use by the Invasive Freshwater Diazotroph Cyanobacterium, Cylindrospermopsis Raciborskii[J]. Harmful Algae, 2014, 39: 112-120. doi: 10.1016/j.hal.2014.06.015
CrossRef Google Scholar
|
[20]
|
KAUTSKY H, HIRSCH A. Neue Versuche Zur Kohlensäureassimilation[J]. Naturwissenschaften, 1931, 19(48): 964.
Google Scholar
|
[21]
|
GRENNI P, ANCONA V, BARRA CARACCIOLO A. Ecological Effects of Antibiotics on Natural Ecosystems: A Review[J]. Microchemical Journal, 2018, 136: 25-39. doi: 10.1016/j.microc.2017.02.006
CrossRef Google Scholar
|
[22]
|
ECKERT E M, QUERO G M, DI CESARE A, et al. Antibiotic Disturbance Affects Aquatic Microbial Community Composition and Food Web Interactions but not Community Resilience[J]. Molecular Ecology, 2019, 28(5): 1170-1182. doi: 10.1111/mec.15033
CrossRef Google Scholar
|
[23]
|
VAN BRUGGEN A H C, GOSS E M, HAVELAAR A, et al. One Health-Cycling of Diverse Microbial Communities as a Connecting Force for Soil, Plant, Animal, Human and Ecosystem Health[J]. Science of the Total Environment, 2019, 664: 927-937. doi: 10.1016/j.scitotenv.2019.02.091
CrossRef Google Scholar
|
[24]
|
QUINLAN E L, NIETCH C T, BLOCKSOM K, et al. Temporal Dynamics of Periphyton Exposed to Tetracycline in Stream Mesocosms[J]. Environmental Science & Technology, 2011, 45(24): 10684-10690.
Google Scholar
|
[25]
|
DANNERM C, ROBERTSON A, BEHRENDS V, et al. Antibiotic Pollution in Surface Fresh Waters: Occurrence and Effects[J]. Science of the Total Environment, 2019, 664: 793-804. doi: 10.1016/j.scitotenv.2019.01.406
CrossRef Google Scholar
|
[26]
|
BAI F, JIA Y L, YANG C P, et al. Multiple Physiological Response Analyses Aid the Understanding of Sensitivity Variation between Microcystis Aeruginosa and Chlorella Sp. under Paraquat Exposures[J]. Environmental Sciences Europe, 2019, 31: 1-17. doi: 10.1186/s12302-018-0176-7
CrossRef Google Scholar
|
[27]
|
CHO U H, SEO N H. Oxidative Stress in Arabidopsis Thaliana Exposed to Cadmium is Due to Hydrogen Peroxide Accumulation[J]. Plant Science, 2005, 168(1): 113-120.
Google Scholar
|
[28]
|
MORELLI E, SCARANO G. Copper-Induced Changes of Non-Protein Thiols and Antioxidant Enzymes in the Marine Microalga Phaeodactylum Tricornutum[J]. Plant Science, 2004, 167(2): 289-296.
Google Scholar
|
[29]
|
TORRES M A, BARROS M P, CAMPOS S C G, et al. Biochemical Biomarkers in Algae and Marine Pollution: A Review[J]. Ecotoxicology and Environmental Safety, 2008, 71(1): 1-15.
Google Scholar
|
[30]
|
MITTLER R. Oxidative Stress, Antioxidants and Stress Tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410.
Google Scholar
|
[31]
|
MULLER P, LI X P, NIYOGI K K. Non-Photochemical Quenching. A Response to Excess Light Energy[J]. Plant Physiology, 2001, 125(4): 1558-1566.
Google Scholar
|
[32]
|
PERRON M C, QIU B S, BOUCHER N, et al. Use of Chlorophyll a Fluorescence to Detect the Effect of Microcystins on Photosynthesis and Photosystem Ⅱ Energy Fluxes of Green Algae[J]. Toxicon, 2012, 59(5): 567-577.
Google Scholar
|
[33]
|
BRESSAN M, BRUNETTI R. The Effects of Nitriloacetic Acid, Cd and Hg on the Marine Algae Dunaliella Tertiolecta and Isochrysis Galbana[J]. Water Research, 1988, 22(5): 553-556.
Google Scholar
|
[34]
|
WEI L P, THAKKAR M, CHEN Y H, et al. Cytotoxicity Effects of Water Dispersible Oxidized Multiwalled Carbon Nanotubes on Marine Alga, Dunaliella Tertiolecta[J]. Aquatic Toxicology, 2010, 100(2): 194-201.
Google Scholar
|
[35]
|
THAKKAR M, MITRA S, WEI L P. Effect on Growth, Photosynthesis, and Oxidative Stress of Single Walled Carbon Nanotubes Exposure to Marine Alga Dunaliella Tertiolecta[J]. Journal of Nanomaterials, 2016, 2016: 1-9.
Google Scholar
|
[36]
|
LAVERGNE J, TRISSL H W. Theory of Fluorescence Induction in Photosystem Ⅱ: Derivation of Analytical Expressions in a Model Including Exciton-Radical-Pair Equilibrium and Restricted Energy Transfer between Photosynthetic Units[J]. Biophysical Journal, 1995, 68(6): 2474-2492.
Google Scholar
|
[37]
|
APPENROTH K J, STÖCKEL J, SRIVASTAVA A, et al. Multiple Effects of Chromate on the Photosynthetic Apparatus of Spirodela Polyrhiza as Probed by OJIP Chlorophyll a Fluorescence Measurements[J]. Environmental Pollution, 2001, 115(1): 49-64.
Google Scholar
|
[38]
|
张红波, 董聪聪, 杨燕君, 等. 基于叶绿素荧光探讨链霉素对念珠藻生长及光合毒性效应[J]. 水生生物学报, 2019, 43(3): 664-669.
Google Scholar
|
[39]
|
LAZÁR D, POSPÍŠIL P, NAUŠ J. Decrease of Fluorescence Intensity after the K Step in Chlorophyll a Fluorescence Induction is Suppressed by Electron Acceptors and Donors to Photosystem 2[J]. Photosynthetica, 1999, 37(2): 255-265.
Google Scholar
|