Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2024 Volume 46 Issue 3
Article Contents

YANG Jie, ZHANG Shaorong, ZHANG Qi, et al. Effects of the Water Content in Withered Leaves on the Quality of Camellia nanchuanica Black Tea[J]. Journal of Southwest University Natural Science Edition, 2024, 46(3): 54-69. doi: 10.13718/j.cnki.xdzk.2024.03.005
Citation: YANG Jie, ZHANG Shaorong, ZHANG Qi, et al. Effects of the Water Content in Withered Leaves on the Quality of Camellia nanchuanica Black Tea[J]. Journal of Southwest University Natural Science Edition, 2024, 46(3): 54-69. doi: 10.13718/j.cnki.xdzk.2024.03.005

Effects of the Water Content in Withered Leaves on the Quality of Camellia nanchuanica Black Tea

More Information
  • Corresponding author: ZENG Liang
  • Received Date: 24/07/2023
    Available Online: 20/03/2024
  • MSC: TS272; S377

  • Camellia nanchuanica is a special tea resource of Chongqing. Black tea has a sweet and refreshing taste with a strong sweet aroma. It is difficult to manage the right degree of withering during processing because of its long internodes and thick epidermis wax of leaves. To determine the optimal moisture content for the withering of black tea of Camellia nanchuanica, this study collected the one-bud and two-leaf shoots in spring to process black tea with withered leaves that had moisture contents of 68%, 62%, and 56% with the same process. The taste, color, and enzyme activity were assessed during the processing. The sensory quality and entropy-weight TOPSIS analysis were employed to evaluate the black tea. The results showed that there was a significant negative correlation between the water content of withered leaves and the enzyme activity of POD (r=-0.571). The enzyme activity was the strongest when the water content of withered leaves was 56%. At this point, the variation of tea polyphenols, catechins and pigments were the largest, and the taste intensity decreased. The total free amino acids (6.21%), thearubigins (3.37%), L* and a* values of black tea from withered leaves with 62% water content were higher than those from withered leaves with 68% and 56% water contents. The results of sensory evaluation showed that the black tea made from withered leaves with 62% water content was darker and brighter than that made from leaves with 68% and 56% water contents. The taste was sweet and mellow, and the aroma was pure and lasting. A total of 79 aroma substances were detected in the black tea. The aroma mass fraction of black tea made with 62% water content leaves was 3 119.61 μg/kg, which was significantly higher than that of made from 68% and 56% water contents leaves. The mass fractions of geraniol, linalool, nerol and phenylethanol that gave the tea soup floral and fruity fragrance were higher than those of made from 68% and 56% water contents leaves. Further comprehensive evaluation of the detected taste and aroma components was conducted using the entropy weighted TOPSIS method. It was verified that the black tea made from withered leaves with a moisture content of 62% had the best overall quality. In summary, 62% moisture content is the suitable withering moisture content for Camellia nanchuanica.

  • 加载中
  • [1] 曾建明. 南川野生茶树[J]. 中国茶叶, 1999, 21(1): 37.

    Google Scholar

    [2] 王守生, 湛方栋, 梁挺, 等. 重庆大茶树资源新考[J]. 中国农学通报, 2003, 19(1): 87-90.

    Google Scholar

    [3] 王鲽. 南川野生大茶树特征成分分析研究[D]. 重庆: 西南大学, 2009.

    Google Scholar

    [4] 张凯, 丁阳平, 杨坚. 川渝地区野生大茶树儿茶素和咖啡碱含量比较分析[J]. 应用与环境生物学报, 2013, 19(2): 379-382.

    Google Scholar

    [5] 王亨洪, 索化夷, 杨坚, 等. 川渝地区重要野生大茶树遗传多样性的ISSR分析[J]. 茶叶科学, 2009, 29(2): 168-172.

    Google Scholar

    [6] 曾建明, 杨昌煦. 长江渝东流域茶树种质资源考察简报[J]. 中国茶叶, 1998, 20(6): 35.

    Google Scholar

    [7] 何思佳. 南川区大树茶繁育及栽培技术项目初见成效[J]. 植物医生, 2017, 30(11): 5.

    Google Scholar

    [8] 李小恋, 李伟, 李久炎, 等. 南川大树茶红茶初制过程中品质特征分析[J]. 西南大学学报(自然科学版), 2019, 41(12): 15-23.

    Google Scholar

    [9] 吴浩. 农产品区域品牌建设路径研究——基于南川区茶叶品牌建设的案例[D]. 成都: 西南财经大学, 2019.

    Google Scholar

    [10] 叶玉龙. 萎凋/摊放对茶叶在制品主要理化特性的影响[D]. 重庆: 西南大学, 2018.

    Google Scholar

    [11] 宛晓春, 夏涛. 茶树次生代谢[M]. 北京: 科学出版社, 2015.

    Google Scholar

    [12] 杨娟, 王杰, 王奕, 等. 萎凋叶含水量对四川中小叶群体种工夫红茶品质形成的影响[J]. 食品安全质量检测学报, 2020, 11(13): 4379-4386.

    Google Scholar

    [13] ZHOU J T, YU X L, HE C, et al. Withering Degree Affects Flavor and Biological Activity of Black Tea: a Non-Targeted Metabolomics Approach[J]. LWT, 2020, 130: 109535. doi: 10.1016/j.lwt.2020.109535

    CrossRef Google Scholar

    [14] 黄磊, 夏小欢, 付杰. 不同萎凋程度对绍兴红茶品质的影响[J]. 安徽农业科学, 2020, 48(18): 177-179.

    Google Scholar

    [15] OWUOR P O, OBANDA M. The Impact of Withering Temperature on Black Tea Quality[J]. Journal of the Science of Food and Agriculture, 1996, 70(3): 288-292. doi: 10.1002/(SICI)1097-0010(199603)70:3<288::AID-JSFA482>3.0.CO;2-Q

    CrossRef Google Scholar

    [16] 叶霜, 李承荧, 邱霞, 等. 基于组合赋权的TOPSIS模型在果实品质评价中的应用[J]. 西北农林科技大学学报(自然科学版), 2017, 45(10): 111-121.

    Google Scholar

    [17] 周利平, 左缘缘. 乡村振兴与共同富裕耦合协调发展: 分布动态、空间差异及收敛性研究[J]. 西南大学学报(自然科学版), 2023, 45(9): 98-113.

    Google Scholar

    [18] 曹琼, 李成标. 基于熵权TOPSIS法的农业科技创新能力评价——以湖北省为例[J]. 南方农业学报, 2013, 44(10): 1751-1756.

    Google Scholar

    [19] 梁秋萍, 严学迎. 基于熵权TOPSIS法的不同品种甜樱桃营养品质综合评价[J]. 食品研究与开发, 2021, 42(16): 59-64.

    Google Scholar

    [20] 罗理勇, 曾亮, 李洪军. 川红工夫加工过程多酚类物质及其相关酶的变化规律[J]. 食品科学, 2015, 36(3): 57-62.

    Google Scholar

    [21] 刘昆言. 红条茶加工过程中香气品质形成机制研究[D]. 长沙: 湖南农业大学, 2015.

    Google Scholar

    [22] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶水浸出物测定: GB/T 8305-2013[S]. 北京: 中国标准出版社, 2014.

    Google Scholar

    [23] 国家市场监督管理总局, 国家标准化管理委员会. 茶叶中茶多酚和儿茶素类含量的检测方法: GB/T 8313-2018[S]. 北京: 中国标准出版社, 2018.

    Google Scholar

    [24] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶游离氨基酸总量的测定: GB/T 8314-2013[S]. 北京: 中国标准出版社, 2014.

    Google Scholar

    [25] 傅博强, 谢明勇, 聂少平, 等. 茶叶中多糖含量的测定[J]. 食品科学, 2001, 22(11): 69-73.

    Google Scholar

    [26] YU J Y, LIU Y, ZHANG S R, et al. Effect of Brewing Conditions on Phytochemicals and Sensory Profiles of Black Tea Infusions: a Primary Study on the Effects of Geraniol and B-Ionone on Taste Perception of Black Tea Infusions[J]. Food Chemistry, 2021, 354: 129504. doi: 10.1016/j.foodchem.2021.129504

    CrossRef Google Scholar

    [27] QU F F, ZHU X J, AI Z Y, et al. Effect of Different Drying Methods on the Sensory Quality and Chemical Components of Black Tea[J]. LWT, 2019, 99: 112-118. doi: 10.1016/j.lwt.2018.09.036

    CrossRef Google Scholar

    [28] 张正竹. 茶叶生物化学实验教程[M]. 北京: 中国农业出版社, 2009.

    Google Scholar

    [29] WEI Y M, LI T H, XU SS, et al. The Profile of Dynamic Changes in Yellow Tea Quality and Chemical Composition during Yellowing Process[J]. LWT, 2021, 139: 110792. doi: 10.1016/j.lwt.2020.110792

    CrossRef Google Scholar

    [30] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 茶叶感官审评方法: GB/T 23776-2018[S]. 北京: 中国标准出版社, 2018.

    Google Scholar

    [31] 余鹏辉, 陈盼, 黄浩, 等. 保靖黄金茶1号工夫红茶加工工序对主要滋味物质形成的影响[J]. 食品科学, 2020, 41(10): 185-191.

    Google Scholar

    [32] TSENG Y H, LEE Y L, LI R C, et al. Non-Volatile Flavour Components of Ganoderma Tsugae[J]. Food Chemistry, 2005, 90(3): 409-415. doi: 10.1016/j.foodchem.2004.03.054

    CrossRef Google Scholar

    [33] 马林龙, 刘艳丽, 曹丹, 等. 不同茶树品种(系)的绿茶滋味分析及评价模型构建[J]. 农业工程学报, 2020, 36(10): 277-286.

    Google Scholar

    [34] 毛世红. 基于风味组学的工夫红茶品质分析与控制研究[D]. 重庆: 西南大学, 2018.

    Google Scholar

    [35] 杨亚军. 品种间茶多酚含量差异及其与茶叶品质关系的探讨[J]. 中国茶叶, 1989, 11(5): 8-10.

    Google Scholar

    [36] SAHA P, GHORAI S, TUDU B P, et al. Feature Fusion for Prediction of Theaflavin and Thearubigin in Tea Using Electronic Tongue[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1703-1710. doi: 10.1109/TIM.2017.2672458

    CrossRef Google Scholar

    [37] 陈倩莲, 王芳, 莫楚红, 等. 不同升温方式下大红袍做青中PPO和β-G活性变化对比[J]. 食品研究与开发, 2021, 42(7): 28-32.

    Google Scholar

    [38] 汪冬华, 马艳梅. 多元统计分析与SPSS应用[M]. 2版. 上海: 华东理工大学出版社, 2018.

    Google Scholar

    [39] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  /  Tables(8)

Article Metrics

Article views(7625) PDF downloads(165) Cited by(0)

Access History

Effects of the Water Content in Withered Leaves on the Quality of Camellia nanchuanica Black Tea

    Corresponding author: ZENG Liang

Abstract: 

Camellia nanchuanica is a special tea resource of Chongqing. Black tea has a sweet and refreshing taste with a strong sweet aroma. It is difficult to manage the right degree of withering during processing because of its long internodes and thick epidermis wax of leaves. To determine the optimal moisture content for the withering of black tea of Camellia nanchuanica, this study collected the one-bud and two-leaf shoots in spring to process black tea with withered leaves that had moisture contents of 68%, 62%, and 56% with the same process. The taste, color, and enzyme activity were assessed during the processing. The sensory quality and entropy-weight TOPSIS analysis were employed to evaluate the black tea. The results showed that there was a significant negative correlation between the water content of withered leaves and the enzyme activity of POD (r=-0.571). The enzyme activity was the strongest when the water content of withered leaves was 56%. At this point, the variation of tea polyphenols, catechins and pigments were the largest, and the taste intensity decreased. The total free amino acids (6.21%), thearubigins (3.37%), L* and a* values of black tea from withered leaves with 62% water content were higher than those from withered leaves with 68% and 56% water contents. The results of sensory evaluation showed that the black tea made from withered leaves with 62% water content was darker and brighter than that made from leaves with 68% and 56% water contents. The taste was sweet and mellow, and the aroma was pure and lasting. A total of 79 aroma substances were detected in the black tea. The aroma mass fraction of black tea made with 62% water content leaves was 3 119.61 μg/kg, which was significantly higher than that of made from 68% and 56% water contents leaves. The mass fractions of geraniol, linalool, nerol and phenylethanol that gave the tea soup floral and fruity fragrance were higher than those of made from 68% and 56% water contents leaves. Further comprehensive evaluation of the detected taste and aroma components was conducted using the entropy weighted TOPSIS method. It was verified that the black tea made from withered leaves with a moisture content of 62% had the best overall quality. In summary, 62% moisture content is the suitable withering moisture content for Camellia nanchuanica.

  • 开放科学(资源服务)标识码(OSID):

  • 南川大树茶(Camellia nanchuanica)是重庆市南川区独特的地方大叶种品种资源,生长在海拔1 000~1 300 m之间,年平均气温13.5 ℃. 其节间长,叶片大,芽叶肥壮,叶表面角质层厚,具有强抗寒性与抗病性. 南川大树茶发芽早于当地的中小叶种[1-2],鲜叶内含物质丰富,酯型儿茶素、咖啡碱质量分数高[3-4],酚氨比大于8,适宜制备红茶. 南川大树茶已获得国家茶叶地理标志认证和地理标志商标,是南川区重点发展的特色产业,有较高的经济利用价值. 目前,对南川大树茶的研究多集中在种质资源筛选[5-6]和扦插繁育技术[7]方面,对南川大树茶加工研究较少,仅有红茶初制过程中物质变化的研究[8]. 现有的南川大树茶红茶是借鉴小叶种和红碎茶加工制作而成[9],加工时萎凋湿度掌握不明,萎凋时含水量或高或低与南川大树茶鲜叶特性不匹配. 成品茶外形粗犷,断碎多,品质不一,无法充分发挥南川大树茶的资源优势和产业效益.

    萎凋是红茶初制的第一道工序,是影响红茶外形、滋味和香气的重要环节. 萎凋过程中叶片含水量逐步下降,细胞膨压降低、叶质变软,叶片弹性下降,塑性和柔软性先升后降[10],为红茶良好外形奠定了基础;叶面积缩小和细胞膜选择性透性丧失,酶活力增强,叶片内含物质发生系列变化[11],为红茶的滋味和香气进行物质准备. 含水量是茶叶加工中的重点关注指标,其多少决定着茶叶加工的进程. 萎凋叶含水量影响揉捻的成条率、破碎率[12]及成品茶滋味、香气物质质量分数[13]. 有研究表明高含水量萎凋叶所制茶叶断碎多,制茶率低;低含水量萎凋叶所制茶叶香气沉闷,茶多酚、儿茶素保留少,滋味寡淡[14-15]. 萎凋叶含水量对茶叶品质的影响多以成品茶品质分析为主,其加工过程中对物质质量分数变化研究较少. 熵权TOPSIS是对多目标系统进行排序、优选决策的常用综合评价方法,其计算简便、结果量化客观[16],多用于经济[17]、农业及环境科学行业[18]的决策评估,近年来在食品综合评价中逐渐得以利用[19].

    本研究通过对不同含水量萎凋叶所制红茶进行感官评价和熵权TOPSIS分析,并结合加工过程中不同含水量萎凋叶加工样(鲜叶、萎凋叶、揉捻叶、发酵叶)的生化成分、色泽、酶活性分析,探究萎凋叶含水量对南川大树茶红茶的品质影响,明确南川大树茶红茶加工中茶鲜叶萎凋的最佳含水量,为南川大树茶红茶加工提供理论参考,为建立南川大树茶红茶适宜的加工工艺夯实基础.

1.   材料和方法
  • 福林酚,北京索莱宝科技有限公司;没食子酸、无水碳酸钠、磷酸氢二钠(十二水)、磷酸二氢钾、邻苯二酚、偏磷酸、愈创木酚、聚乙烯吡咯烷酮,成都市科龙化工试剂厂;茚三酮、柠檬酸、谷氨酸,上海源叶生物科技有限公司;蒽酮,国药集团化学试剂有限公司;无水葡萄糖、乙酸乙酯、草酸(二水)、无水乙醇、碳酸氢钠、柠檬酸钠,成都市科隆化学品有限公司;浓硫酸,重庆川东化工集团有限公司;对硝基苯-β-D葡萄糖苷,重庆康坭商贸有限公司,均为分析纯. 乙腈、冰乙酸、甲醇,北京迈瑞达科技有限公司;儿茶素(catechin,C)、表儿茶素(epicatechin,EC)、没食子儿茶素(gallocatechin,GC)、表没食子儿茶素(epigallocatechin,EGC)、儿茶素没食子酸酯(catechingallate,CG)、表儿茶素没食子酸酯(epicatechingallate,ECG)、没食子儿茶素没食子酸酯(gallocatechingallate,GCG)、表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG),成都普瑞法科技开发有限公司,均为色谱纯.

    Synergyhimg全波长酶标仪,美国Biotek公司;GC/MS-2010气相色谱质谱联用仪,LC-20型高效液相色谱仪,日本岛津公司;XL-30 C茶叶粉碎机,旭朗公司;HWS-26电热恒温水浴锅,上海齐欣科学仪器有限公司;5810 R型台式高速冷冻离心机,德国Eppendorf公司;6 CWD-5茶叶萎凋机,衢州市民茶茶机有限公司;6 CR-40茶叶揉捻机,茶叶烘焙机,6 CHFJ-5 B红茶发酵机,浙江上洋器械股份有限公司;工业相机MV-EM 500 C,维视数字图像技术有限公司.

  • 2022年4月中旬,南川大树茶茶鲜叶(1芽2叶)采摘于重庆市南川区德隆镇.

  • 样品加工:茶鲜叶采摘后1 h内运往茶厂,置于萎凋槽内摊放(摊青厚度15 cm,鼓风40 min和摊青1.5 h交替进行,温度23~28 ℃,相对湿度65%~75%),萎凋过程中每3 h测定含水量,当萎凋叶含水量达到68%±2%,62%±2%和56%±2%时记为萎凋成功,取等量萎凋叶经揉捻(45 r/min,120 min)、发酵(2 h,温度30 ℃,相对湿度95%)、干燥(初烘100 ℃,15 min,摊凉40 min,80 ℃足干). 取样固样按表 1进行.

  • 多酚氧化酶(polyphenol oxidase,PPO)、过氧化物酶(peroxidase,POD)测定采用分光光度法[20],β-葡萄糖苷酶(β-glucosidase,β-G)测定参照刘昆言[21]的方法稍作改动.

  • 水浸出物、茶多酚、游离氨基酸总量分别参照GB/T 8305-2013[22],GB/T 8313-2018[23],GB/T 8314-2013[24];可溶性糖采用蒽酮硫酸法[25],黄酮类化合物采用亚硝酸钠-三氯化铝法[26],儿茶素组分和咖啡碱采用高效液相色谱法[27],茶黄素、茶红素、茶褐素采用系统分析法[28].

  • 采用顶空固相微萃取法(headspace solid-phase microextraction,HS-SPME)萃取挥发性组分. 称取1 g磨碎茶样于20 mL萃取瓶中,加入5 μL的癸酸乙酯(25 μg/mL)后再加入5 mL沸超纯水,加盖密封平衡5 min后于60 ℃恒温水浴锅中萃取60 min,在230 ℃解析5 min后进行GC-MS分离鉴定.

  • 色谱条件:DB-5MS毛细管柱(30 m×0.25 mm,0.25 μm),载气为氦气(纯度高于99.999%),进样口温度230 ℃,不分流进样,柱流量为1 mL/min,压力50.5 kPa. 升温程序:40 ℃,以4 ℃/min升温至100 ℃,保持2 min;以2 ℃/min升温至120 ℃,保持4 min;以2.5 ℃/min升温至180 ℃,保持2 min;以20 ℃/min升温至230 ℃,保持2 min. 质谱条件:电子电离源,离子源温度230 ℃,电离能70 eV,检测器电压0.3 kV. 扫描方式为全扫描,质量扫描范围为40~400 m/z.

  • 利用NIST 08,NIST 08s标准谱库对GC/MS的色谱峰信息进行对比检索(相似度≥85%),根据保留时间定性化合物并用癸酸乙酯内标法相对定量,结合TGSC信息系统(http://www.thegoodscentscompany.com)进行香气属性注释.

  • 采用计算机视觉技术测定色差,即用工业相机MV-EM500C保存图片为BMP文件(2 592×1 944),然后使用Image J(1.53)提取L*值(亮度)、a*值(红绿度)和b*值(黄蓝度),每个样品保存6张图像[29].

  • 由5位高级评茶员按《茶叶感官审评方法》[30]进行审评.

  • 采用SPSS 26.0进行方差分析(Duncan检验,p<0.05)和相关性分析,Origin 2022作图,利用SPSSAU平台对成品茶数据进行正/逆向化和标准化处理,并作熵权TOPSIS分析.

2.   结果与分析
  • 结果如表 2. 外形上:62%含水量萎凋叶所制红茶色泽乌黑润,有锋苗,匀整度高,得分高于68%含水量萎凋叶所制红茶(色泽偏褐,断碎较多). 汤色上:68%和62%含水量萎凋叶所制红茶得分较高,茶汤明亮. 香气上:62%含水量萎凋叶所制红茶香气得分较高,与68%,56%相比甜香更持久. 滋味上:62%含水量萎凋叶所制红茶甜醇浓厚,优于68%和56%含水量萎凋叶所制红茶. 叶底上:62%和68%含水量萎凋叶所制红茶叶底红亮,得分高. 综上,62%含水量萎凋叶所制红茶感官品质高于68%和56%.

  • 水浸出物是茶汤中可溶性化合物的总称,可影响茶汤滋味浓厚度[31]. 随加工工艺的推进,水浸出物质量分数降低,56%加工样降幅最大(图 1a),不同含水量萎凋叶所制成品红茶水浸出物质量分数68%>62%>56%(表 3). 游离氨基酸可分为鲜味、甜味和苦味氨基酸,能提高茶汤鲜爽度. 游离氨基酸可与咖啡碱、茶多酚、茶黄素作用降低茶汤苦涩味[32]. 不同含水量加工样中游离氨基酸峰值出现不同,62%加工样在成品时的游离氨基酸增幅最大(图 1b),所制成品茶中游离氨基酸高达6.21%(表 3),显著高于68%和56%. 萎凋叶含水量影响加工中游离氨基酸的质量分数,进而影响红茶的鲜爽度. 可溶性糖是茶汤中甜味的主要来源,在加工过程中可溶性糖质量分数先增后减,不同含水量加工样间差异无统计学意义,所制成品红茶中可溶性糖在2.25%~2.42%之间.

    茶多酚、黄酮类化合物、咖啡碱与茶汤苦涩味显著相关[33]. 在加工中,咖啡碱先降后升,发酵后62%加工样降幅最大;茶多酚和黄酮类化合物呈下降趋势,揉捻时的62%加工样降幅最大(图 1d-1f),说明此时细胞破碎度大,物质转化充分. 不同含水量萎凋叶所制成品红茶中、黄酮类化合物和茶多酚质量分数为68%>62%>56%,咖啡碱在4.70%~4.87%之间(表 3). 儿茶素是茶多酚的主体物质,儿茶素总量随加工逐渐减少,成品时略增,56%加工样变幅最大,62%次之,68%最小(图 2l). 儿茶素包括酯型儿茶素和非酯型儿茶素,酯型儿茶素(EGCG,GCG,ECG,CG)是茶汤的涩味主体,非酯型儿茶素(GC,EGC,C,EC)与苦味相关[34]. 在加工过程中C和EC先增后减,56%的发酵和成品样变幅最大;GC和EGC先减后增,68%的揉捻样最高,62%次之(图 2a-2b). EGCG在加工中持续下降,56%加工样降幅最大(图 2e);ECG成品样略回升(图 2f),GCG和CG在萎凋后急剧上升,68%增幅最大(图 2g-2h). 不同含水量萎凋叶所制红茶非酯型儿茶素和酯型儿茶素随萎凋叶含水量下降显著降低(表 4),68%,62%和56%含水量萎凋叶所制红茶儿茶素保留量分别为71%,68%和58%. 研究报道,茶叶中儿茶素保留量在70%以上茶汤苦涩味重,保留量在65%左右时茶汤滋味浓厚鲜爽[35],因而,62%含水量萎凋叶所制红茶滋味较68%和58%浓厚鲜爽. 茶色素是红茶茶汤色泽的主体物质,包括茶黄素、茶红素和茶褐素. 茶黄素有强收敛性;茶红素使茶汤红亮,增强滋味强度[36];茶褐素使茶汤发暗,降低收敛性. 加工过程中茶色素质量分数均持续增加,茶黄素在揉捻时增幅最大随后下降,56%加工样增幅最大;茶红素在成品时62%加工样增幅最大;不同含水量萎凋叶所制红茶成品茶褐素变幅为56%>62%>68%(图 1g-1j),56%加工样茶褐素为3.99%(表 3). 萎凋叶含水量影响各工艺中的茶多酚、黄酮类化合物、儿茶素组分、茶色素物质的变幅大小,进而影响成品茶中物质的积累.

  • 加工中的茶叶色泽变化可以用L*a*b*值表达,L*值越大代表茶亮度越高,a*值(红绿度)和b*值(黄蓝度)越大代表干茶色泽将趋近于红、黄色调. 随着加工的进行,不同含水量加工样L*b*值均呈下降趋势,a*值先升高,成品时再下降. 与68%和62%加工样相比,56%加工样L*a*b*值变化更大. L*b*值在萎凋和发酵时随萎凋叶含水量下降显著降低;a*值在萎凋和揉捻时随萎凋叶含水量下降显著增加. 不同含水量萎凋叶所制成品红茶L*a*b*值差异有统计学意义(图 3). 62%含水量萎凋叶所制红茶a*L*较56%高,茶叶红度更大,色泽更亮;b*值较68%和56%低,茶叶黄度低. 综上62%含水量所制红茶色泽亮润最优.

  • 不同含水量萎凋叶所制红茶挥发性物质分析鉴定结果如表 5,除内标(癸酸乙酯)外共检测出79种物质,其中,烃类15种,醇类19种,醛类18种,酮类6种,酯类12种,酸类3种和其他类物质7种. 68%,62%和56%含水量萎凋叶所制红茶分别检出49,43和46种挥发性物质,其中共有组分18种(含内标),香叶醇(180.64~273.87 μg/kg)、芳樟醇(94.79~218.24 μg/kg)、苯乙醛(47.01~321.12 μg/kg)、水杨酸甲酯(151.39~269.71 μg/kg)为主要成分,分别占其香气类别的28.29%~35.32%,14.64%~28.15%,15.74%~45.87%和34.50%~43.52%. 不同含水量萎凋叶所制红茶挥发性物质以醇类、醛类和酯类为主,占挥发性物质总量的60%以上(图 4a),各类别间占比有差异. 68%含水量萎凋叶所制红茶醇类化合物占比较高(35.35%),其次是酯类、醛类;62%和56%含水量所制红茶醇类、醛类和酯类占比均匀(20.50%~24.86%). 花香型的反式-橙花叔醇在56%含水量萎凋叶所制红茶中质量分数最高,为145.39 μg/kg,清果香的N-丁酸(反-2-己烯基)酯,甜玫瑰花香的香叶醇、芳樟醇、橙花醇和苯乙醇在62%含水量萎凋叶所制红茶中质量分数高于68%和56%含水量萎凋叶所制红茶(表 5). 此外,68%,62%和56%含水量萎凋叶所制红茶分别存在15,13和12种差异物质(图 4b). 62%含水量萎凋叶所制红茶挥发性物质质量分数最高,为3 119.61 μg/kg,68%含水量萎凋叶所制红茶挥发性物质质量分数最低,为1 806.18 μg/kg(表 5),与感官审评中62%萎凋叶所制红茶甜香持久带花香一致.

  • 不同含水量萎凋叶加工中酶活性变化如图 5. PPO酶活性随加工推进先升后降,三者加工样间除发酵外差异无统计学意义,发酵时62%活性显著低于68%和56%. POD酶活性在加工中先升后降,56%加工样POD酶活性显著高于68%和62%,与品质成分茶多酚、儿茶素56%加工样变幅最大相合. β-G酶是水解糖苷类前体物质,释放芳香醇类和萜烯醇类化合物,有助于愉悦花果香的形成[37]. 发酵前,β-G酶活性68%含水量萎凋叶揉捻时活性最高,为8.81 U/(g·min),发酵后62%和56%加工样β-G酶活性显著高于68%,与成品茶中香气质量分数趋势一致.

    萎凋叶含水量、酶、品质成分和色泽Spearman相关分析结果如表 6,萎凋叶含水量与POD酶活性呈显著负相关(|r|>0.5[38]). 加工过程中茶多酚、EGCG、ECG、酯型儿茶素、儿茶素总量与PPO和POD酶间有显著正相关,茶黄素、茶红素、茶褐素与PPO酶活性显著负相关. PPO催化儿茶素类物质氧化形成邻醌,POD氧化邻醌形成茶黄素、茶红素和不溶性高聚化合物[39]. 萎凋叶含水量通过影响POD酶活性改变加工中茶多酚、儿茶素组分和茶色素的变幅,改变红茶中的物质量和配比,进而影响茶汤滋味及色泽. 此外萎凋叶含水量与游离氨基酸总量、黄酮类化合物、非酯型儿茶素、L*值、b*值有显著相关性.

  • 感官评价大多运用专家的知识结构和丰富经验,生化成分是品质的物质基础,而单一生化成分无法综合评价茶叶的品质,因此在感官审评基础上引入更依赖客观数据反应信息的熵权TOPSIS模型对不同含水量萎凋叶所制红茶品质进行综合评价更为客观. 以不同含水量萎凋叶所制红茶的9个样本20个滋味物质成分、3个色泽指标和17个香气成分共40个指标建立初始化决策矩阵,经归一化处理计算分析得到权重结果(表 7)及评价结果(表 8). 结果表明,9个成品红茶样本与理想最优方案的相对接近度大小为0.388 5~0.579 7,其中,3个68%含水量萎凋叶所制红茶样品相对接近度较低,综合排序为7,8,9;62%含水量萎凋叶所制红茶相对接近度高(0.571 6~0.579 7),综合排序位于前3,所得综合品质较68%和56%优,与感官审评结果一致,因此62%含水量萎凋叶所制成品红茶综合品质最优.

3.   结论
  • 通过对不同含水量萎凋叶南川大树茶红茶加工样的品质成分、色泽、酶及成品茶感官审评和熵权TOPSIS分析,表明南川大树茶红茶加工过程中游离氨基酸总量、可溶性糖和a*值先增后减,茶多酚、黄酮类化合物、儿茶素(EC,EGCG,ECG)、L*b*值持续下降,不同含水量加工样中品质成分在发酵工艺后差异最显著. 相关分析表明萎凋叶含水量与POD酶活性呈显著负相关(r=-0.571),显著影响加工中茶多酚、儿茶素和茶色素物质的转化,是影响红茶品质的主要酶类,56%含水量加工样物质变幅最大. 62%含水量萎凋叶所制成品红茶其游离氨基酸总量(6.21%)、茶红素(3.37%)、L*a*值均高于68%和56%含水量萎凋叶所制红茶. 成品红茶中共检测出79种香气物质,62%含水量萎凋叶所制红茶香气质量分数(3 119.61 μg/kg)高于68%和56%. 其中,赋予茶汤花香和果香的香叶醇、芳樟醇、橙花醇和苯乙醇质量分数高于68%和56%. 感官审评表明62%萎凋叶含水量所制成品红茶与68%和56%相比,干茶色泽黑润亮,滋味甜醇浓厚,香气持久纯正. 进一步通过熵权TOPSIS法对检测到的滋味、色泽和香气成分进行综合分析,验证表明62%含水量萎凋叶所制红茶综合品质最佳. 综上,含水量为62%是南川大树茶适宜的萎凋含水量.

Figure (5)  Table (8) Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return