Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 46 Issue 8
Article Contents

WANG Yan-hong, CAI Zhi-peng, CHU Chang-mu. Existence and Multiplicity of Solutions for a Kirchhoff Type Equation with a Critical Sobolev-Hardy Exponent[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(8): 41-46. doi: 10.13718/j.cnki.xsxb.2021.08.008
Citation: WANG Yan-hong, CAI Zhi-peng, CHU Chang-mu. Existence and Multiplicity of Solutions for a Kirchhoff Type Equation with a Critical Sobolev-Hardy Exponent[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(8): 41-46. doi: 10.13718/j.cnki.xsxb.2021.08.008

Existence and Multiplicity of Solutions for a Kirchhoff Type Equation with a Critical Sobolev-Hardy Exponent

More Information
  • Corresponding author: CHU Chang-mu
  • Received Date: 14/10/2020
    Available Online: 20/08/2021
  • MSC: O176.3

  • In this work, a class of Kirchhoff type equation with a critical Sobolev-Hardy exponent has been studied. Firstly, the local minimum of the corresponding functional near the origin of the equation is estimated and the first non-trivial solution of the equation is obtained by Ekeland's variational principle. Subsequently, it is proved that the corresponding functional satisfies the (PS)c condition by means of the lumped compactness principle. The second nontrivial solution of the equation is obtained by the mountain path lemma. Moreover, it is proved that two solutions of the equation are positive solutions by the maximum principle.
  • 加载中
  • [1] ALVES C O, CORRÊA F J S A, MA T F. Positive Solutions for a Quasilinear Elliptic Equation of Kirchhoff Type[J]. Computers and Mathematics with Applications, 2005, 49(1): 85-93. doi: 10.1016/j.camwa.2005.01.008

    CrossRef Google Scholar

    [2] LIU J, LIAO J F, TANG C L. Positive Solutions for Kirchhoff-Type Equations with Critical Exponent in ${{\mathbb{R}}^{N}}$[J]. Journal of Mathematical Analysis and Applications, 2015, 429(2): 1153-1172. doi: 10.1016/j.jmaa.2015.04.066

    CrossRef ${{\mathbb{R}}^{N}}$" target="_blank">Google Scholar

    [3] 张黔, 邓志颖. 含临界指数项和双重奇异项的Kirchhoff型椭圆边值方程的正解[J]. 西南师范大学学报(自然科学版), 2020, 45(2): 11-19.

    Google Scholar

    [4] 刘选状, 吴行平, 唐春雷. 一类带有临界指数增长项的Kirchhoff型方程正的基态解的存在性[J]. 西南大学学报(自然科学版), 2015, 37(6): 54-59.

    Google Scholar

    [5] LI Y H, LI F Y, SHI J P. Existence of Positive Solutions to Kirchhoff Type Problems with Zero Mass[J]. Journal of Mathematical Analysis and Applications, 2014, 410(1): 361-374. doi: 10.1016/j.jmaa.2013.08.030

    CrossRef Google Scholar

    [6] 王继禹, 贾秀玲, 段誉, 等. 一类具有临界增长项的Kirchhoff型方程正解的研究[J]. 西南大学学报(自然科学版), 2016, 38(12): 61-66.

    Google Scholar

    [7] SHUAI W. Sign-Changing Solutions for a Class of Kirchhoff-Type Problem in Bounded Domains[J]. Journal of Differential Equations, 2015, 259(4): 1256-1274. doi: 10.1016/j.jde.2015.02.040

    CrossRef Google Scholar

    [8] ZHANG Z T, PERERA K. Sign Changing Solutions of Kirchhoff Type Problems Via Invariant Sets of Descent Flow[J]. Journal of Mathematical Analysis and Applications, 2006, 317(2): 456-463. doi: 10.1016/j.jmaa.2005.06.102

    CrossRef Google Scholar

    [9] ZHANG Q G, SUN H R, NIETO J J. Positive Solution for a Superlinear Kirchhoff Type Problem with a Parameter[J]. Nonlinear Analysis, 2014, 95: 333-338. doi: 10.1016/j.na.2013.09.019

    CrossRef Google Scholar

    [10] LEI C Y, LIU G S, GUO L T. Multiple Positive Solutions for a Kirchhoff Type Problem with a Critical Nonlinearity[J]. Nonlinear Analysis Real World Applications, 2016, 31: 343-355.

    Google Scholar

    [11] CHU C M, TANG C L. Multiple Results for Critical Quasilinear Elliptic Systems Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2013, 36(3): 789-805.

    Google Scholar

    [12] BRÉZIS H, LIEB E. A Relation Between Pointwise Convergence of Functions and Convergence of Functionals[J]. Proceedings of the American Mathematical Society, 1983, 88(3): 486-490. doi: 10.1090/S0002-9939-1983-0699419-3

    CrossRef Google Scholar

    [13] AMBROSETTI A, RABINOWITZ P H. Dual Variational Methods in Critical Point Theory and Applications[J]. Journal of Functional Analysis, 1973, 14(4): 349-381. doi: 10.1016/0022-1236(73)90051-7

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(700) PDF downloads(112) Cited by(0)

Access History

Other Articles By Authors

Existence and Multiplicity of Solutions for a Kirchhoff Type Equation with a Critical Sobolev-Hardy Exponent

    Corresponding author: CHU Chang-mu

Abstract: In this work, a class of Kirchhoff type equation with a critical Sobolev-Hardy exponent has been studied. Firstly, the local minimum of the corresponding functional near the origin of the equation is estimated and the first non-trivial solution of the equation is obtained by Ekeland's variational principle. Subsequently, it is proved that the corresponding functional satisfies the (PS)c condition by means of the lumped compactness principle. The second nontrivial solution of the equation is obtained by the mountain path lemma. Moreover, it is proved that two solutions of the equation are positive solutions by the maximum principle.

  • 考虑如下方程:

    其中Ω$\mathbb{R}^3$是光滑的有界区域,aελ>0,fλ=λf++f-L(Ω),f±=±max{± f,0}$\not \equiv$0,1 < q < 2,0≤s < 1,2*(s)=2(3-s)是临界Sobolev-Hardy指数,$\|u\|^{2}=\left(\int_{\mathit{\Omega}}|\nabla u|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}$.

    长期以来,学者们研究了如下Kirchhoff方程:

    其中Ω${{\mathbb{R}}^{N}}$(N≥3)上的有界光滑区域,abλ>0. 这类方程解的存在性与多重性一直受到很多学者的关注[1-8]. 特别地,文献[9]研究了如下一类带变系数项的超线性Kirchhoff方程:

    其中Ω${{\mathbb{R}}^{N}}$(N≥3)上的有界光滑区域,a是常数,mf${{\mathbb{R}}_{+}}\to {{\mathbb{R}}_{+}}$是连续函数. 当ε充分小时,通过变分法和迭代法,文献[9]得到了方程(3)至少有一个正解. 对于m=1,文献[10]考虑了临界项和凹凸非线性项问题,通过变分法和集中紧性原理得到了方程(3)至少有两个正解.

    据我们所知,涉及临界Sobolev-Hardy指数的情形没有结果,为此我们研究该情形,并给出相关结果:

    定理1  设a>0,0≤s < 1,1 < q < 2,fλL(Ω),则当ε>0充分小时,存在λ* >0使得对∀λ∈(0,λ*),方程(1)至少存在两个正解.

1.   第一个正解的存在性
  • $|u{{|}_{p}}={{\left({{\int_{\mathit{\Omega }}{\left| u \right|}}^{p}}~\text{d}x \right)}^{\frac{1}{p}}}$${\left| u \right|_\infty } = \mathop {\sup }\limits_{x \in \mathit{\Omega }} {\mkern 1mu} \left\{ u \right\}$. Br和∂Br分别是以0为圆心,以r为半径的闭球和球面. un±(x)=max{±un,0}. C1C2C3,…是正常数.

    是Sobolev最佳嵌入常数. 如果对∀φH01(Ω),

    则称u是方程(1)的解. 众所周知,方程(1)对应的能量泛函为

    其临界点是方程(1)的解.

    引理1  若定理1的条件成立,则存在常数RρΛ0>0,使得对∀λ∈(0,Λ0),$\inf\limits _{u \in \overline{B_{R}}} I_{\lambda}(u) < 0$$\left.I_{\lambda}(u)\right|_{u \in \partial B_{R}}>\rho$.

      由Sobolev嵌入定理知,存在C>0,使得$\int_{\mathit{\Omega}} u^{q} \mathrm{d} x \leqslant C \int_{\mathit{\Omega}}|\nabla u|^{2} \mathrm{d} x(1 \leqslant q \leqslant 6)$.

    $g(t)=\frac{a}{2} t^{2-q}-\frac{1}{2^{*}(s)} S^{-\frac{2^{*}(s)}{2}} t^{2^{*}(s)-q}$,则存在正常数R,使得$g(R)={\max\limits _{t>0}}g(t)>0$,记${{\mathit{\Lambda }}_{0}}=\frac{qg(R)}{2C{{\left| {{f}_{+}} \right|}_{\infty }}}$,对∀λ∈(0,Λ0),存在常数ρ>0,有$\left.I_{\lambda}(u)\right|_{u \in \partial B_{R}}>\rho$.

    根据文献[11]中引理3.1,存在φ0C0(Ω),使得$\int_{\mathit{\Omega}} f_{\lambda}(x)\left(\varphi_{0}^{+}\right)^{q} \mathrm{d} x>0$. 由1 < q < 2知,当t充分小时,Iλ(0) < 0. 因此,$d=\inf \limits_{u \in B_{R}} I_{\lambda}(u) < 0$.

    定理2  若定理1的条件成立,则∀λ∈(0,Λ0),方程(1)存在正解u1,满足I(u1) < 0.

      由引理1知,对任意的λ∈(0,Λ0),$d=\inf\limits _{u \in B_{R}} I_{\lambda}(u) < 0 < \inf \limits_{\|u\|=R} I_{\lambda}(u)$. 由于BR是闭凸集,在BR上运用Ekeland变分原理,获得Iλ的一个局部极小解u1. 对∀ψH01(Ω),让t>0足够小,使得u0±BR,有$\lim \limits_{t \rightarrow 0} \frac{I_{\lambda}\left(u_{1} \pm t \psi\right)-I_{\lambda}\left(u_{1}\right)}{t} \geqslant 0$. 故

    在(6)式中取测试函数ψ=-u1-,通过计算得‖u1-‖=0,这意味着u1≥0. 因此,u1是方程(1)的非负非平凡解. 根据强极大值原理可得u1>0. 因此,u1是方程(1)的正解且Iλ(u1)=d < 0.

2.   第二个正解的存在性
  • 引理2  若定理1的条件成立,则当λ∈(0,Λ0)时,对于给定的R0>0,存在v0H01(Ω)且‖v0‖>R0,使得Iλ(v0) < 0.

      对∀t>0,

    由0≤s < 1知,2*(s)>4. 因此,当t+∞时,Iλ(tu)-∞. 故存在v0H01(Ω)满足‖v0‖>R0,使得Iλ(v0) < 0.

    引理3  若定理1的条件成立,则当$c < c^{*}=\left(\frac{1}{2}-\frac{1}{2^{*}(s)}\right)(a S)^{\frac{3-s}{2-s}}-D \lambda^{\frac{2}{2-q}}$时,Iλ满足(PS)c条件,其中$D=\left(\frac{4-q}{4 q}\left|f_{+}\right|_{\infty} C\right)^{\frac{2}{2-q}}\left(\frac{2 q}{a}\right)^{\frac{2}{2-q}}$C为引理1中提到的常数.

      令{un}⊂H01(Ω)是Iλ的一个(PS)c序列,当n→∞时,有

    根据Sobolev嵌入定理和(7)式,有

    由1 < q < 2 < 2*(s)知,{un}⊂H01(Ω)有界. 因此,存在其子列(仍记为{un})和u0H01(Ω),使得在H01(Ω)上,有unu0;在L2*(s)(Ω,|x|-sdx)上,有un$\rightharpoonup$u0;在Lp(Ω)(1≤p < 2*(s))上,有unu0;在Ω上几乎处处有un(x)→u0(x). 利用集中紧性引理和Sobolev-Hardy不等式,有

    其中J是一个至多可数的指标集,δxj是在xj上的Dirac测度. 我们可以找到序列{xj}⊂Ωμjνj,使得

    接下来,证明J=Ø. 假设JØ,对ε>0,设ψεj(x)∈C0满足条件0≤ψεj≤1,$\left|\nabla \psi_{\varepsilon, j}(x)\right| \leqslant \frac{4}{\varepsilon}$,当$x \in B\left(x_{j}, \frac{\varepsilon}{2}\right)$时,ψεj=1,当xB(xjε)时,ψεj=0. 根据(4)式,可知

    由{un}有界知,$\lim \limits_{\varepsilon \rightarrow 0} \lim \limits_{n \rightarrow \infty} \int_{{\mathit{\Omega}}} f_{\lambda}\left(u_{n}^{+}\right)^{q-1} \psi_{\varepsilon, j}(x) u_{n} \mathrm{d} x=0$. 由于{ψεjun}在H01(Ω)上有界,则(Iλ (un),ψεjun)→0. 因此

    结合(8)式,可推得:(ⅰ) $\mu_{j} \geqslant\left(a S^{\frac{2^{*}(s)}{2}}\right)^{\frac{2}{2^{*}(s)-2}}=a^{\frac{3}{2-s}} S^{\frac{3-s}{2-s}}$,或者(ⅱ) μj=νj=0. 下面证明(ⅰ)不成立. 由(7)式和Young不等式,可推出

    此与c < c*是矛盾的. 故μj=νj=0,即J=Ø,这意味着当n→∞时,$\int_{\mathit{\Omega}} \frac{\left|u_{n}\right|^{2^{*}(s)}}{|x|^{s}} \mathrm{~d} x \rightarrow \int_{\mathit{\Omega}} \frac{\left|u_{0}\right|^{2^{*}(s)}}{|x|^{s}} \mathrm{~d} x$. 可推出{un}在H01(Ω)上强收敛于u0.

    定义

    其中C3(s)为与s有关的常数,Uε(x)是方程$-\Delta U_{\varepsilon}=U_{\varepsilon}^{5}\left(x \in \mathbb{R}^{3}\right)$的解,并且满足$\int_{\mathbb{R}^{3}}\left|U_{\varepsilon}\right|^{6} \mathrm{~d} x=\int_{\mathbb{R}^{3}}\left|\nabla U_{\varepsilon}\right|^{2} \mathrm{~d} x={{S}^{\frac{3}{2}}}$. 令ηC0(Ω)满足条件0≤η≤1,|▽η|≤C,且当|x| < R0时,η(x)=1;|x|>2R0时,η(x)=0. 设uε(x)=η(x)Uε(x),有

    引理4  若定理1的条件成立,则存在λ1>0,当λ∈(0,λ1)时,$\sup\limits _{t \geqslant 0} I_{\lambda}\left(u_{1}+t u_{\varepsilon}\right) <c^{*}$.

      对pq>0,有

    从定理2的证明,不难看出u1是有界的. 因此,存在M>0,使得‖u1‖ < M. 注意到Iλ(u1) < 0,由(12)式、Hölder不等式和Young不等式知

    利用文献[10]的方法知,存在tε>0和与ελ无关的常数t1t2,满足0 < t1tεt2 < ∞,使得$\sup \limits_{t \geqslant 0} J\left(t u_{\varepsilon}\right)$=J(tεuε). 根据(10)式,我们得到

    注意到$\int_{\mathit{\Omega }}{u_{\varepsilon }^{q}}\text{d}x\le {{C}_{8}}{{\varepsilon }^{\frac{q}{2}}}$,由(11)和(13)式知

    $\varepsilon=\lambda^{\frac{4}{q(2-q)}}$, 当$0 < \lambda < \lambda_{1}=\left(\frac{C_{12}}{C_{9}+D}\right)^{q(2-s)}$时,有

    因此$\sup \limits_{t \geqslant 0} I_{\lambda}\left(u_{1}+t u_{\varepsilon}\right) < c^{*}$.

    定理3  若定理1的条件成立,则存在λ*>0,使得∀λ∈(0,λ*),方程(1)有一个正解u2,并且满足Iλ(u2)>0.

     令λ*=min{Λ0λ1},当0 < λ < λ*时,由引理1和2知,Iλ(u)具有山路几何结构. 令

    由引理3和引理4知c < c*,且Iλ(u)满足(PS)c条件. 由山路引理[12-13]获得方程(1)的非平凡解u2满足Iλ(u2)>0. 类似定理2的论述,不难得到u2是方程(1)的一个正解.

    定理1的证明由定理2和定理3知,方程(1)有两个正解u1u2,满足Iλ(u1) < 0 < Iλ(u2).

Reference (13)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return