Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 47 Issue 2
Article Contents

RAN Ling, CHEN Shangjie, LI Lin. Infinitely Many Large Energy Solutions For Semi-Linear Degenerate Schrödinger Equations[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(2): 21-26. doi: 10.13718/j.cnki.xsxb.2022.02.005
Citation: RAN Ling, CHEN Shangjie, LI Lin. Infinitely Many Large Energy Solutions For Semi-Linear Degenerate Schrödinger Equations[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(2): 21-26. doi: 10.13718/j.cnki.xsxb.2022.02.005

Infinitely Many Large Energy Solutions For Semi-Linear Degenerate Schrödinger Equations

More Information
  • Corresponding author: CHEN Shangjie ; 
  • Received Date: 26/04/2021
    Available Online: 20/02/2022
  • MSC: O176.3

  • In this paper, we firstly obtained the existence of infinitely many large energy solutions for the following semi-linear degenerate Schrödinger equations in \lt inline-formula \gt ${{\mathbb{R}}^{N}}$ \lt /inline-formula \gt by variational methods and \lt i \gt Z \lt /i \gt \lt sub \gt 2 \lt /sub \gt -mountain pass theorem: $ \left\{\begin{array}{l} -\Delta_{\gamma} u+V(x) u=f(x, u)+\mu g(x, u) \qquad x \in \mathbb{R}^{N} \\ u \in S_{\gamma, V(x)}^{2}\left(\mathbb{R}^{N}\right) \end{array}\right. $ where \lt i \gt N \lt /i \gt ≥2, Δ \lt sub \gt \lt i \gt γ \lt /i \gt \lt /sub \gt is a degenerate elliptic operator, nonlinear term of equation \lt i \gt f \lt /i \gt ( \lt i \gt x \lt /i \gt , \lt i \gt u \lt /i \gt ) satisfy super-linear condition at infinity, and \lt i \gt g \lt /i \gt ( \lt i \gt x \lt /i \gt , \lt i \gt u \lt /i \gt ) satisfy the sub-linear condition.
  • 加载中
  • [1] KOGOJ A E, LANCONELLI E. On Semilinear Δλ-Laplace Equation[J]. Nonlinear Analysis, 2012, 75(12): 4637-4649. doi: 10.1016/j.na.2011.10.007

    CrossRef Google Scholar

    [2] GRUŠIN V V. On A Class of Elliptic Pseudodifferential Operators that are Degenerate on a Submanifold[J]. Mathematics of the USSR-Sbornik, 1971, 84(2): 163-195.

    Google Scholar

    [3] FRANCHI B, LANCONELLI E. Hölder Regularity Theorem for a Class of Linear Nonuniformly Elliptic Operators with Measurable Coefficients[J]. Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze, 1983, 10(4): 523-541.

    Google Scholar

    [4] FRANCHI B, LANCONELLI E. An Embedding Theorem for Sobolev Spaces Related to Non-Smooth Vector Fieldsand Harnack Inequality[J]. Communications in Partial Differential Equations, 1984, 9(13): 1237-1264. doi: 10.1080/03605308408820362

    CrossRef Google Scholar

    [5] ANH C T. Global Attractor for a Semilinear Strongly Degenerate Parabolic Equation on ${{\mathbb{R}}^{N}}$[J]. Nonlinear Differential Equations and Applications, 2014, 21(5): 663-678. doi: 10.1007/s00030-013-0261-y

    CrossRef ${{\mathbb{R}}^{N}}$" target="_blank">Google Scholar

    [6] LUYEN D T, TRI N M. Existence of Infinitely Many Solutions for Semilinear Degenerate Schrödinger Equations[J]. Journal of Mathematical Analysis and Applications, 2018, 461(2): 1271-1286. doi: 10.1016/j.jmaa.2018.01.016

    CrossRef Google Scholar

    [7] AMBROSETTI A, RABINOWITZ P H. Dual Variational Methods in Critical Point Theory and Applications[J]. Journal of Functional Analysis, 1973, 14(4): 349-381. doi: 10.1016/0022-1236(73)90051-7

    CrossRef Google Scholar

    [8] 陈兴菊, 欧增奇. 具有Fučik谱共振的Kirchhoff方程非平凡解的存在性[J]. 西南师范大学学报(自然科学版), 2021, 46(8): 24-31.

    Google Scholar

    [9] 蒙璐, 储昌木, 雷俊. 一类带有变指数增长的Neumann问题[J]. 西南大学学报(自然科学版), 2021, 43(6): 82-88.

    Google Scholar

    [10] 余芳, 陈文晶. 带有临界指数增长的分数阶问题解的存在性[J]. 西南大学学报(自然科学版), 2020, 42(10): 116-123.

    Google Scholar

    [11] RAHAL B, HAMDANI M K. Infinitely Many Solutions for Δλ-Laplace Equations with Sign-Changing Potential[J]. Journal of Fixed Point Theory and Applications, 2018, 20(4): 1-17.

    Google Scholar

    [12] CHEN S J, TANG C L. High Energy Solutions for the Superlinear Schrödinger-Maxwell Equations[J]. Nonlinear Analysis, 2009, 71(10): 4927-4934. doi: 10.1016/j.na.2009.03.050

    CrossRef Google Scholar

    [13] RABINOWITZ P. Minimax Methods in Critical Point Theory with Applications to Differential Equations[M]. Providence, Rhode Island: American Mathematical Society, 1986.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(907) PDF downloads(230) Cited by(0)

Access History

Other Articles By Authors

Infinitely Many Large Energy Solutions For Semi-Linear Degenerate Schrödinger Equations

    Corresponding author: CHEN Shangjie ; 

Abstract: In this paper, we firstly obtained the existence of infinitely many large energy solutions for the following semi-linear degenerate Schrödinger equations in \lt inline-formula \gt ${{\mathbb{R}}^{N}}$ \lt /inline-formula \gt by variational methods and \lt i \gt Z \lt /i \gt \lt sub \gt 2 \lt /sub \gt -mountain pass theorem: $ \left\{\begin{array}{l} -\Delta_{\gamma} u+V(x) u=f(x, u)+\mu g(x, u) \qquad x \in \mathbb{R}^{N} \\ u \in S_{\gamma, V(x)}^{2}\left(\mathbb{R}^{N}\right) \end{array}\right. $ where \lt i \gt N \lt /i \gt ≥2, Δ \lt sub \gt \lt i \gt γ \lt /i \gt \lt /sub \gt is a degenerate elliptic operator, nonlinear term of equation \lt i \gt f \lt /i \gt ( \lt i \gt x \lt /i \gt , \lt i \gt u \lt /i \gt ) satisfy super-linear condition at infinity, and \lt i \gt g \lt /i \gt ( \lt i \gt x \lt /i \gt , \lt i \gt u \lt /i \gt ) satisfy the sub-linear condition.

  • 本文主要研究半线性退化Schrödinger方程

    无穷多大能量解的存在性,其中N≥2,Δγ是退化椭圆算子,形式如下:

    函数γj${{\mathbb{R}}^{N}}\to \mathbb{R}$是连续的,是${{\mathbb{R}}^{N}}$\Π上不等于0的C1函数,其中

    并且,函数γj满足文献[1]中相关结论的所有条件,退化算子Δγ包含Grušin型算子

    其中(xy)表示${{\mathbb{R}}^{{{N}_{1}}}}\times {{\mathbb{R}}^{{{N}_{2}}}}$中的点. 文献[2]研究了α是整数的情况,文献[3-4]研究了α不是整数的情况. Δγ算子还包含强退化算子

    其中αβ是非负常数. 文献[5]研究了算子Pαβ. 关于Δγ算子的更多信息可参见文献[1].

    μ=0时,文献[6]利用变分法研究了半线性Δγ椭圆型偏微分方程(1)的无穷多解的存在性,其中方程(1)的位势V(x)是强制位势,并且方程(1)的非线性项f(xu)满足文献[7]中的局部Ambrosetti-Rabinowitz增长条件. 另外,利用变分法还可以解决其他方程解的存在性问题,见文献[8-10].

    基于上述结果,本文研究半线性退化Schrödinger方程(1)的无穷多解的存在性,其中方程(1)的非线性项是凹凸的. 为了研究方程(1),我们做如下假设:

    (V1) V(x)∈C(${{\mathbb{R}}^{N}}, \mathbb{R}$)满足$\mathop {\inf }\limits_{x \in \mathbb{R}{^N}} {\kern 1pt} V\left( x \right) > 0$,存在常数r0>0,使得

    (f1) fC(${{\mathbb{R}}^{N}}\times \mathbb{R}, \mathbb{R}$),对满足2 < p < 2γ*= $\frac{{2\tilde N}}{{N - 2}}$p,存在常数c0>0,使得

    (f2) $\mathop {\lim }\limits_{\left| z \right| \to \infty } {\kern 1pt} \frac{{F\left( {x,z} \right)}}{{{{\left| z \right|}^2}}} = + \infty \left( {x \in\mathbb{R} {^N}} \right)$,其中

    (f3) 存在常数L0>0,θ>2以及c1≥0,使得

    (f4) f(x,-z)=-f(xz)($\forall \left( x, z \right)\in {{\mathbb{R}}^{N}}\times \mathbb{R}$).

    (g1) 存在常数1 < q1 < q2 < 2,存在函数hi(x)∈ ${{L}^{\frac{2}{2-{{q}_{i}}}}}\left( {{\mathbb{R}}^{N}}, {{\mathbb{R}}_{+}} \right)$(i=1,2),使得

    (g2) g(x,-z)=-g(xz)($\forall \left( x, z \right)\in {{\mathbb{R}}^{N}}\times \mathbb{R}$).

    定理 1  假设条件(V1),(f1)-(f4),(g1)和(g2)成立. 则存在常数μ0>0,使得当|μ|≤μ0时,方程(1)有无穷多个大能量解.

    注 1  据我们所知,定理1首次研究了在${{\mathbb{R}}^{N}}$上具有凹凸非线性项的半线性Δγ椭圆型偏微分方程的无穷多个能量解. 另外,值得一提的是,文献[11]运用喷泉定理得到了${{\mathbb{R}}^{N}}$中的有界域上的具有凹凸非线性项的半线性Δγ椭圆型偏微分方程无穷多个高能量解的存在性.

    定义函数空间

    其中${{\nabla }_{\gamma }}u=\left( {{\gamma }_{1}}{{\partial }_{{{x}_{1}}}}u, {{\gamma }_{2}}{{\partial }_{{{x}_{2}}}}u, \cdots {{\gamma }_{N}}{{\partial }_{{{x}_{N}}}}u \right)$. 显然SγV(x)2(${{\mathbb{R}}^{N}}$)是希尔伯特空间,其内积为

    范数$\left\| u \right\|={{\left( u, u \right)}^{\frac{1}{2}}}$. 根据文献[6]的引理2.2,嵌入$S_{\gamma , V\left( x \right)}^{2}\left( {{\mathbb{R}}^{N}}\right)↺S_{\gamma }^{2}\left( {{\mathbb{R}}^{N}} \right)$是连续的,而且当条件(V1)成立时,嵌入$S_{\gamma , V\left( x \right)}^{2}\left( {{\mathbb{R}}^{N}}\right)↺{{L}^{q}}\left( {{\mathbb{R}}^{N}} \right)$是紧的(q∈[2,2γ*)). 据此,对$\forall q\in [2, 2_{\gamma }^{*})$,存在常数dq,使得

    其中Lq(${{\mathbb{R}}^{N}}$)表示勒贝格空间,在Lq(${{\mathbb{R}}^{N}}$)上的范数记作|·|q.

    方程(1)具有变分结构. 考虑函数JSγV(x)2$\left( {{\mathbb{R}}^{N}} \right)\to \mathbb{R}$,定义为

    从条件(f4)和(g2)可知J(u)是偶函数,并且满足J(0)=0. 同时J是一阶连续可导函数,且

    显然u是方程(1)的弱解当且仅当uSγV(x)2(${{\mathbb{R}}^{N}}$)是J(u)的临界点.

    引理 1  假设条件(V1),(g1)以及(f2)成立,则对任意有限维子空间$Y\subset S_{\gamma , V\left( x \right)}^{2}\left( {{\mathbb{R}}^{N}} \right)$,存在R=R(Y),使得当$\left\| u \right\| \ge R$J(u)≤0.

      假设存在序列$\left\{ {{u}_{n}} \right\}\subset Y$满足$\left\| u_n \right\| \to + \infty $,并且J(un)>0. 令${w_n} = \frac{{{u_n}}}{{\left\| {{u_n}} \right\|}}$,则{wn}为有界序列,从而存在{wn}的子列,仍记为{wn},满足对于几乎处处的x${{\mathbb{R}}^{N}}$,都有${w_n}\left( x \right) \to w\left( x \right)$. 记Λ={x${{\mathbb{R}}^{N}}$w(x)≠0},故meas(Λ)>0,并且当$n \to \infty $时,对几乎处处的xΛ$\left| {{u_n}\left( x \right)} \right| \to + \infty $. 根据条件(f2)以及Fatou引理,可得

    根据$G\left( {x, z} \right) = \int_0^1 {g\left( {x, tz} \right)z{\rm{d}}t} $和条件(g1),可得

    因此,由(2)式以及Hölder不等式,可得

    由1 < q1 < q2 < 2以及$\left\| {{u_n}} \right\| \to + \infty $可知,当$n \to \infty $时,有

    又根据J(un)>0,有

    因此,由(3),(7)以及(8)式,可得

    这结论与(5)式矛盾.

    根据文献[12]的引理2.5,选择整数m≥1,使得

    其中c0是条件(f1)中的常数,选择X=SγV(x)2(${{\mathbb{R}}^{N}}$)上的一组正交基{ej},令

    V=Ym-1W=Zm,则SγV(x)2(${{\mathbb{R}}^{N}}$)= $V \oplus W$,且V是有限维空间.

    引理 2  设条件(V1),(g1)和(f1)成立,则存在正常数μ0ρα,满足当|μ|≤μ0时,${\left. {J\left( u \right)} \right|_{\left\{ {u \in w:\left\| u \right\| = \rho } \right\}}} \ge \alpha $.

      根据条件(f1)和$F\left( {x, z} \right) = \int_0^1 {f\left( {x, tz} \right)z{\rm{d}}t} $可得

    因此,由(3),(6),(9)式以及1 < q1 < q2 < 2,对任意满足uW$\left\| u \right\| \le 1$u,有

    其中

    t≥0时,令

    显然存在常数0 < t0≤1,对$\forall t \in (0, {t_0}]$满足g(t)>0. 选择$\left\| u \right\| = {t_0} = \rho $,可得

    引理 3  设条件(V1),(f1)-(f3)和(g1)成立,则JSγV(x)2(${{\mathbb{R}}^{N}}$)中的任意Palais-Smale序列有界.

      假设{un}是J的Palais-Smale序列,存在常数c$\mathbb{R}$,当$n \to \infty $J(un)$ \to $cJ′(un)$ \to $0. 假设存在子列,仍记为{un},当$n \to \infty $时,使得$\left\| u \right\| \to + \infty $. 令${w_n} = \frac{{{u_n}}}{{\left\| {{u_n}} \right\|}}$,则存在{wn}中的子列,仍记为{wn},满足在L2(${{\mathbb{R}}^{N}}$)中wn$ \to $w,对几乎处处的x${{\mathbb{R}}^{N}}$wn(x)$ \to $w(x). 令Λ={x${{\mathbb{R}}^{N}}$w(x)≠0}. 如果meas(Λ)>0,用引理1相似的证明方法,即可得出矛盾. 因此meas(Λ)=0,可推出对几乎处处的x${{\mathbb{R}}^{N}}$w(x)=0,以及在L2(${{\mathbb{R}}^{N}}$)中wn$ \to $0.

    根据条件(f1)以及p>2,可知

    再次用条件(f1),存在常数M>0,满足

    因此,可得

    又由$F\left( {x, z} \right) = \int_0^1 {f\left( {x, tz} \right)z{\rm{d}}t} $,显然

    根据(10)和(11)式,有

    其中${{\tilde c}_1} = \left( {\frac{\theta }{2} + 1} \right)\left( {M + 2{c_0}} \right)$. 结合条件(f3),可知

    $G\left( {x, z} \right) = \int_0^1 {g\left( {x, tz} \right)z{\rm{d}}t} $,以及条件(g1)、Hölder不等式和(2)式,推出

    $n \to \infty $时,$\left\| u \right\| \to \infty $. 由1 < q1 < q2 < 2,当$n \to \infty $时,有

    故根据(3),(4)式和θ>2,当$n \to \infty $时,有

    由此可推出$0 \ge \frac{\theta }{2} - 1$,这个不等式与θ>2矛盾. 故{un}在SγV(x)2(${{\mathbb{R}}^{N}}$)中有界.

    引理 4  设条件(V1),(g1)和(f1)成立,则J的任意有界Palais-Smale序列在SγV(x)2(${{\mathbb{R}}^{N}}$)中有强收敛子列.

      假设{un}是函数J的有界Palais-Smale序列,即存在常数c$\mathbb{R}$,当$n \to \infty $时,有

    则存在{un}的子列(仍记为{un})和uSγV(x)2(${{\mathbb{R}}^{N}}$),使得在Lq(${{\mathbb{R}}^{N}}$)中${u_n} \to u\left( {2 \le q < 2_\gamma ^*} \right)$. 显然,当$n \to \infty $时,有

    由条件(f1)以及Hölder不等式,当$n \to \infty $时,有

    根据条件(g1)、(2)式以及${\rm{sup}}\left\| {{u_n}} \right\| < + \infty $,当$n \to \infty $时,可得

    用相似的证明方法,当$n \to \infty $时,有

    因此,当$n \to \infty $时,有

    由此,结合(13)和(14)式,当$n \to \infty $时,可得

    $\left\{ {{u}_{n}} \right\}\subset S_{\gamma , V\left( x \right)}^{2}\left( {{\mathbb{R}}^{N}} \right)$有强收敛子列.

    定理1的证明  根据引理1-引理4可知文献[13]中定理9.12的所有条件被满足. 因此,方程(1)在${S_{\gamma ,V(x)}^2\left( {{\mathbb{R}}^{N}} \right)}$中有无穷多个大能量解.

Reference (13)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return