Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 47 Issue 4
Article Contents

PENG Hongling, FAN Mingshu. Global Existence of Solutions to Semilinear Fractional Reaction-Diffusion Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(4): 45-51. doi: 10.13718/j.cnki.xsxb.2022.04.007
Citation: PENG Hongling, FAN Mingshu. Global Existence of Solutions to Semilinear Fractional Reaction-Diffusion Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(4): 45-51. doi: 10.13718/j.cnki.xsxb.2022.04.007

Global Existence of Solutions to Semilinear Fractional Reaction-Diffusion Equation

More Information
  • Received Date: 08/05/2021
    Available Online: 20/04/2022
  • MSC: O175.29

  • In this paper, the global solution and long time asymptotic behavior of the semilinear fractional reaction-diffusion equation have been studied with homogeneous Dirichlet boundary. The Caffarelli-Silvestre extension method was used to transform the nonlocal Laplacian problem into a variable local problem. Combing Galёrkin method, we can get the existence of solution. Lastly we utilize some inequalities to get long time asymptotic behavior of global solutions.
  • 加载中
  • [1] APPLEBAUM D. Lévy Processes and Stochastic Calculus[M]. Cambridge: Cambridge University Press, 2009.

    Google Scholar

    [2] VALDINOCI E. From the Long Jump Random Walk to the Fractional Laplacian[J]. Sema Journal Boletín De La Sociedad Espaola De Matemática Aplicada, 2009, 49(49): 33-44.

    Google Scholar

    [3] CAFFARELLI L, VASSEUR A. Drift Diffusion Equations with Fractional Diffusion and the Quasi-Geostrophic Equation[J]. Annals of Mathematics, 2010, 171(3): 1903-1930. doi: 10.4007/annals.2010.171.1903

    CrossRef Google Scholar

    [4] KISELEV A, NAZAROV F, VOLBERG A. Global Well-Posedness for the Critical 2D Dissipative Quasi-Geostrophic Equation[J]. Inventiones Mathematicae, 2007, 167(3): 445-453. doi: 10.1007/s00222-006-0020-3

    CrossRef Google Scholar

    [5] 柳文清, 陈清婉, 傅金波. 具有分数阶扩散的捕食-食饵模型的共存性[J]. 西南师范大学学报(自然科学版), 2020, 45(3): 16-20.

    Google Scholar

    [6] LANDKOF N S. Foundations of Modern Potential Theory[M]. New-York: Springer-Verlag, 1972.

    Google Scholar

    [7] DI NEZZA E, PALATUCCI G, VALDINOCI E. Hitchhiker's Guide to the Fractional Sobolev Spaces[J]. Bulletin des Sciences Mathématiques, 2012, 136(5): 521-573. doi: 10.1016/j.bulsci.2011.12.004

    CrossRef Google Scholar

    [8] CAFFARELLI L, SILVESTRE L. An Extension Problem Related to the Fractional Laplacian[J]. Communications in Partial Differential Equations, 2007, 32(8): 1245-1260. doi: 10.1080/03605300600987306

    CrossRef Google Scholar

    [9] CORTAZAR C, ELGUETA M, ROSSI J D. The Blow-Up Problem for a Semilinear Parabolic Equation with a Potential[J]. Journal of Mathematical Analysis and Applications, 2007, 335(1): 418-427. doi: 10.1016/j.jmaa.2007.01.079

    CrossRef Google Scholar

    [10] DE PABL O A, QUIRÓS F, RODRÍGUEZ A, et al. A General Fractional Porous Medium Equation[J]. Communications on Pure and Applied Mathematics, 2012, 65(9): 1242-1284. doi: 10.1002/cpa.21408

    CrossRef Google Scholar

    [11] BESTEIRO A, RIAL D. Global Existence for Vector Valued Fractional Reaction-Diffusion Equations[J]. Publicacions Mathematiques, 2021, 65(2): 653-680.

    Google Scholar

    [12] TAN Z, XIE M H. Global Existence and Blowup of Solutions to Semilinear Fractional Reaction-Diffusion Equation with Singular Potential[J]. Journal of Mathematical Analysis and Applications, 2021, 493(2): 124548. doi: 10.1016/j.jmaa.2020.124548

    CrossRef Google Scholar

    [13] VLAHOS L, ISLIKER H, KOMINIS Y, et al. Normal and Anomalous Diffusion: A Tutorial[M]. Patras: Patras University Press, 2008.

    Google Scholar

    [14] 谭忠. 具有特殊扩散过程的反应扩散方程[J]. 数学年刊A辑, 2001, 22(5): 597-606. doi: 10.3321/j.issn:1000-8134.2001.05.008

    CrossRef Google Scholar

    [15] SATTINGER D H. On Global Solution of Nonlinear Hyperbolic Equations[J]. Archive for Rational Mechanics and Analysis, 1968, 30(2): 148-172. doi: 10.1007/BF00250942

    CrossRef Google Scholar

    [16] PAYNE L E, SATTINGER D H. Saddle Points and Instability of Nonlinear Hyperbolic Equations[J]. Israel Journal of Mathematics, 1975, 22(3): 273-303.

    Google Scholar

    [17] BRÄNDLE C, COLORADO E, DE PABLO A, et al. A Concave-Convex Elliptic Problem Involving the Fractional Laplacian[J]. Proceedings of the Royal Society of Edinburgh(Section A Mathematics), 2013, 143(1): 39-71. doi: 10.1017/S0308210511000175

    CrossRef Google Scholar

    [18] TZIRAKIS K. Sharp Trace Hardy-Sobolev Inequalities and Fractional Hardy-Sobolev Inequalities[J]. Journal of Functional Analysis, 2016, 270(12): 4513-4539. doi: 10.1016/j.jfa.2015.11.016

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1645) PDF downloads(315) Cited by(0)

Access History

Other Articles By Authors

Global Existence of Solutions to Semilinear Fractional Reaction-Diffusion Equation

Abstract: In this paper, the global solution and long time asymptotic behavior of the semilinear fractional reaction-diffusion equation have been studied with homogeneous Dirichlet boundary. The Caffarelli-Silvestre extension method was used to transform the nonlocal Laplacian problem into a variable local problem. Combing Galёrkin method, we can get the existence of solution. Lastly we utilize some inequalities to get long time asymptotic behavior of global solutions.

  • 随着科学的发展,经典Laplacian方程Δu=0不适合生活中很多复杂的物理问题,特别是大范围不规则的扩散现象,由此人们提出了分数阶Laplacian算子. 从概率论的角度看,分数阶Laplacian算子是稳定Lévy过程中的无穷小生成元,是Lévy飞行过程中的尺度极限[1-2],它在金融数学、概率论、生物学等领域中有着广泛的应用[3-5].

    常见分数阶Laplacian算子的定义有3种,根据Riesz位势给出的定义[6]、根据傅里叶变换给出的定义[7]以及利用函数延拓给出的等价定义[8]. 本文用文献[8]中的定义.

    文献[9]研究了半线性抛物方程utu+V(x)up在Dirchlet条件下的爆破,其中Ω${\mathbb{R}}^{N}$中的光滑有界凸区域,M≥0,V是Lipschitz连续的,φ>0且φ满足相容性条件.

    文献[10]研究了分数阶多孔介质方程(FPME)$\frac{\partial u}{\partial t}+(-\Delta)^{\frac{\sigma}{2}}\left(|u|^{m-1} u\right)=0$${\mathbb{R}}^N$空间中Cauchy问题解的存在性和唯一性,其中0 < σ < 2,m>0. 近期还有很多关于分数阶反应扩散方程的研究[11-12]. 本文主要研究的是如下一类半线性分数阶反应扩散方程:

    的非负解的性质. 其中Ω${\mathbb{R}}^N$中的有界光滑域,a(x)∈C(Ω),1 < p < 2s*$2_{s}^{*}=\frac{2 N}{N-2 s}(N>2 s)$是分数阶Sobolev迹嵌入定理的临界指数,(-Δ)s(0 < s < 1)是分数阶Laplacian算子. 方程(1)描述的是一类反常扩散现象,u表示的是扩散物质的浓度[13],故本文默认u≥0.

    将方程(1)按文献[8]中的方法进行延拓. 令UΩ×(0,∞)→ $ \mathbb{R}$是函数uΩ$ \mathbb{R}$的延拓函数,记

    D的横向边界为LD=∂Ω×[0,∞),将方程(1)化为

    记(-Δ)s=As$(-\Delta)^{\frac{5}{2}}=A_{\frac{s}{2}}$,0 < s < 1. 方程(1)与方程(2)等价[8]. 定义方程(2)的能量泛函为[14]

    其中

    这里

    同理方程(1)的能量泛函定义为

    受文献[13-16]的启发,定义

    E(U(t))关于t求导,得

    因为a(x)∈C(Ω),Ω是有界区域,故存在mM>0,使得m≤|a(x)|≤M成立. 定义势井(稳定集)为

    定义势井的深度为

    本文的主要结果如下:

    定理1   若1 < pp*$p^{*}=\frac{N}{N-2 s}$u0Σ1,则方程(1)存在整体解u=u(xtu0).

    定理2   若U=U(xytU0)是方程(2)的解,且U0Σ1,则存在α>0,使得

    定理3   若U=U(xytU0)是方程(2)的整体解,且在$H_{0, L}^{s}(D)$上关于t一致有界,则在$H_{0, L}^{s}(D)$中,对任意序列{t}n,当tn→∞时,存在一个稳定解w,使得U(xytnU0)→w.

1.   解的整体存在性
  • 为证明定理1,先引入引理1、引理2,其证明过程与文献[12]中的相关结论的证明类似,此处省去证明.

    引理1   $d=\frac{p-1}{2(p+1)} \vartheta^{-\frac{2(p+1)}{p-1}}$,其中$\frac{1}{\vartheta}=\inf\limits_{\substack{U \in H_{0, L}^{s}\ (D) \\ U \neq 0}}\ \frac{h^{\frac{1}{2}}(U)}{g^{\frac{1}{p+1}}(U)}$.

    由分数阶Sobolev迹嵌入不等式(证明见文献[17]),设$\frac{1}{\vartheta_{1}}$是最好的嵌入指数,由于|a(x)|∈[mM],则有

    引理2   若1 < pp*$p^{*}=\frac{N}{N-2 s}$,令ρn(x)=min{ |x|-2sn},βn(x)=min{a(x)upn},则对任意的T>0和任意$u_{n_{0}} \in C_{0}^{\infty}(\mathit{\Omega}), a(x) \in C(\mathit{\bar{\Omega}}), u \in H_{0}^{s}(\mathit{\Omega})$,方程

    存在整体解unC([0,T];H0s(Ω)),使得$\dot{u}_{n} \in L^{2}\left([0, T] ; H_{0}^{s}(\Omega)\right), \dot{u}_{n}=\frac{\partial u_{n}}{\partial t}$.

    定理1的证明.

       由引理2可知,方程(5)存在弱解$u_{n} \in C\left([0, T] ; H_{0}^{s}(\mathit{\Omega})\right) \text {. 在 } H_{0}^{s}(\mathit{\Omega})$中,$u_{n_{0}} \in C_{0}^{\infty}(\mathit{\Omega}), u_{n_{0}} \rightarrow u_{0}$,且存在ε0>0使得$I\left(u_{n_{0}}\right) \leqslant I\left(u_{0}\right)+\varepsilon_{0}<d$. 在方程$\rho_{n}(x) \dot{u}_{n}+A_{s} u_{n}=a(x) u_{n}^{p}$两边同乘$\dot{u}_{n}$,再在Ω×(0,t)上积分,可得

    下证∀t∈[0,T],un(t)∈Σ1. 用反证法,设存在最小时间t*,使得$u_{n}\left(t^{*}\right) \notin \mathit{\Sigma}_{1}$. 因为unC([0,T];H0s(Ω)),且E(U(t))关于t单调递减,则un(t*)∈∂Σ1,即I(un(t*))=d$\int_{\mathit{\Omega}}\left|A_{\frac{s}{2}} u_{n}\left(t^{*}\right)\right|^{2} \mathrm{~d} x=\int_{\mathit{\Omega}} a(x) u_{n}\left(t^{*}\right)^{p+1} \mathrm{~d} x$. 显然第一种情况与(6)式矛盾. 将第二种情况代入I(un),再结合$\vartheta $的定义和引理1,可得

    这也与(6)式矛盾. 所以∀t∈[0,T],un(t)∈Σ1. 由Σ1的定义,有

    即有

    由(7)式,可得

    由引理1和I(u0)+ε0 < d,可知当ε0取足够小时,有

    γ=1-δ∈(0,1),则有

    方程$\rho_{n}(x) \dot{u}_{n}+A_{s} u_{n}=a(x) u_{n}^{p}$两边同乘un,再在Ω×{0}上积分,得

    其中$C_{1}=1-\frac{M}{m}(1-\gamma)>0$C是与nT无关的常数. 所以$\left\{{u}_{n}\right\}_{n=1}^{\infty}$L2([0,T];H0s(Ω))中一致有界. 综上所述,对任意的T≥0,序列{un}都存在一个u,使得

    所以方程(1)存在整体解.

2.   渐近行为
  • 在本节中,为证明定理2和定理3,先引入引理3,其证明过程参见文献[12].

    引理3   Σ1=Σ1*∪{0},其中$\mathit{\Sigma}_{1}^{*}=\left\{U \mid U \in H_{0, L}^{s}(D), E(U)<d, H(U)=h(U)-g(U)>0\right\}$.

    定理2的证明.

    由引理3,对∀t≥0,有H(U(t))≥0. 则

    由分数阶Sobolev迹嵌入不等式,有

    与定理1中证明过程相似,令$\delta=\vartheta^{p+1}\left(\frac{2(p+1)}{p-1} E\left(U_{0}\right)\right)^{\frac{p-1}{2}}$,同样选适当的U0使得0 < δ < $\frac{m}{M}$ < 1. 再令γ=1-δ∈(0,1),则

    构造$f(t)=\frac{1}{2} \int_{0}^{t} \int_{\mathit{\Omega} \times\{0\}} \frac{|U|^{2}}{|x|^{2 s}} \mathrm{~d} x \mathrm{~d} \tau$,计算得

    在(11)式中,对任意的T>t0,由Hardy不等式[18]

    所以,当t∈[t0T)时,结合(9)式和(12)式有

    由(10)式知,当t∈[t0,∞)时,有

    结合(9)式和(14)式可知,当t∈[t0T)时,有

    由(13)式和(15)式可知

    则对任意的T0>t0,若T0满足C2T0,当tt0时,有$\int_{t}^{\infty} E(U(\tau)) \mathrm{d} \tau \leqslant T_{0} E(U(t))$.

    $y(t)=\int_{t}^{\infty} E(U(\tau)) \mathrm{d} \tau>0$,则$y^{\prime}(t) \leqslant-\frac{1}{T_{0}} y(t)$. 由Gronwall不等式和E(U(t))的单调性可得

    由(16)式可得,对∀t>T0,有$E\left(U\left(T_{0}+t\right)\right) \leqslant E\left(U\left(t_{0}\right)\right) \mathrm{e}^{1-\frac{t}{T 0}}$. 结合(9)式,可得

    其中$C=\frac{2 \mathrm{e}(p+1)}{p-1} E\left(U\left(t_{0}\right)\right), \alpha=\frac{1}{T_{0}}$.

    定理3的证明   对任意序列tn→∞,令Un=U(xytnU0). 由于自反巴拿赫空间的有界序列都是弱紧的,所以存在一个序列{Un}和函数U,使得

    令测试函数

    其中$\psi \in H_{0, L}^{S}(D), \rho \in C_{0}^{2}(0, 1), \rho \geqslant 0, \int_{0}^{1} \rho(s) \mathrm{d} s=1$. 由弱解的定义,有

    对(17)式等号左边第二项用分部积分法,结合ρ(0)=ρ(1)=0,令δ=ttn,得

    因为U(tn+δ)(0≤δ≤1)在H0,Ls(D)中一致有界,所以存在序列{tn}和函数ωδω,使得

    下证在Ω×{0}中几乎处处有ωδ=ω. 结合能量等式和Hölder不等式,当tn→∞时,有

    因为0≤δ≤1,当tn→∞时,有‖U(tn+δ)-U(tn)‖L2(Ω×{0})→0,即在Ω×{0}中几乎处处有ωδ=ω. 重新整理(18)式,可得

    由勒贝格控制收敛定理可知,当tn→∞时,(19)式后3项趋近于0. 对第二项,有

    又因为$\int_{0}^{1} \rho(\delta) \mathrm{d} \delta=1$,所以(19)式可简化为

    U(tn)在弱意义上趋近于一个稳定解.

Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return