Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 47 Issue 4
Article Contents

HU Yuqi, LAI Jinqiu, YAO Chunqing. 2-Dimensional Hyperbolic Yamabe Equation in Form of Warped Products[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(4): 52-57. doi: 10.13718/j.cnki.xsxb.2022.04.008
Citation: HU Yuqi, LAI Jinqiu, YAO Chunqing. 2-Dimensional Hyperbolic Yamabe Equation in Form of Warped Products[J]. Journal of Southwest China Normal University(Natural Science Edition), 2022, 47(4): 52-57. doi: 10.13718/j.cnki.xsxb.2022.04.008

2-Dimensional Hyperbolic Yamabe Equation in Form of Warped Products

More Information
  • Received Date: 12/10/2021
    Available Online: 20/04/2022
  • MSC: O186.1

  • In this paper, the Yamabe Equation of 2-dimensional hyperbolic space in the form of $\mathbb{R}_{+} \times{ }_{\varphi} S^{1}$ is studied in a special form of warped products, that is, the metric of rotational symmetry. The Yamabe Equation and its solution of the standard unit sphere in the form of warped product are derived. On this basis, a set of special solutions of the 2-dimensional hyperbolic Yamabe Equation are found by analogy.
  • 加载中
  • [1] YAMABE H. On a Deformation of Riemannian Structures on Compact Manifolds[J]. Osaka Mathematical Journal, 1960, 12(1): 21-37.

    Google Scholar

    [2] TRUDINGER N S. Remarks Concerning the Conformal Deformation of Riemannian Structures on Compact Manifolds[J]. Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze, 1968, 22(2): 265-274.

    Google Scholar

    [3] AUBIN T. Some Nonlinear Problems in Riemannian Geometry[M]. Berlin: Springer-Verlag, 1998.

    Google Scholar

    [4] SCHOEN R. Conformal Deformation of a Riemannian Metric to Constant Scalar Curvature[J]. Journal of Differential Geometry, 1984, 20(2): 479-495.

    Google Scholar

    [5] AVILES P, MCOWEN R. Conformal Deformations of Complete Manifolds with Negative Curvature[J]. Journal of Differential Geometry, 1985, 21(2): 269-281.

    Google Scholar

    [6] BLAND J, KALKA M. Complete Metrics Conformal to the Hyperbolic Disc[J]. Proceedings of the American Mathematical Society, 1986, 97(1): 128-132. doi: 10.1090/S0002-9939-1986-0831400-6

    CrossRef Google Scholar

    [7] DUC D M. Complete Metrics with Nonpositive Curvature on the Disk[J]. Proceedings of the American Mathematical Society, 1991, 113(1): 171-176. doi: 10.1090/S0002-9939-1991-1059624-8

    CrossRef Google Scholar

    [8] GINOUX N. About the Lorentzian Yamabe Problem[J]. Geometriae Dedicata, 2015, 174(1): 287-309. doi: 10.1007/s10711-014-0018-8

    CrossRef Google Scholar

    [9] KONG D X, LIU Q. Hyperbolic Yamabe Problem[J]. Applied Mathematics-A Journal of Chinese Universities, 2017, 32(2): 147-163. doi: 10.1007/s11766-017-3422-7

    CrossRef Google Scholar

    [10] DOBARRO F, LAMI DOZO E. Scalar Curvature and Warped Products of Riemann Manifolds[J]. Transactions of the American Mathematical Society, 1987, 303(1): 161-168. doi: 10.1090/S0002-9947-1987-0896013-4

    CrossRef Google Scholar

    [11] BETTIOL R G, PICCIONE P. Infinitely Many Solutions to the Yamabe Problem on Noncompact Manifolds[J]. Annales de l'Institut Fourier, 2018, 68(2): 589-609. doi: 10.5802/aif.3172

    CrossRef Google Scholar

    [12] RUIZ J M. Multiplicity of Solutions to the Yamabe Equation on Warped Products[J]. Journal of Geometry and Physics, 2019, 138: 44-54. doi: 10.1016/j.geomphys.2018.12.013

    CrossRef Google Scholar

    [13] PETERSEN P. Riemannian Geometry[M]. New York: Springer Verlag, 2006.

    Google Scholar

    [14] LEE J M. Riemannian Manifolds: An Introduction to Curvature[M]. New York: Springer-Verlag, 1997.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(628) PDF downloads(256) Cited by(0)

Access History

Other Articles By Authors

2-Dimensional Hyperbolic Yamabe Equation in Form of Warped Products

Abstract: In this paper, the Yamabe Equation of 2-dimensional hyperbolic space in the form of $\mathbb{R}_{+} \times{ }_{\varphi} S^{1}$ is studied in a special form of warped products, that is, the metric of rotational symmetry. The Yamabe Equation and its solution of the standard unit sphere in the form of warped product are derived. On this basis, a set of special solutions of the 2-dimensional hyperbolic Yamabe Equation are found by analogy.

  • 紧致黎曼流形上的Yamabe问题最早由文献[1]提出并证明,但文献[1]的证明存在一定缺陷,后由文献[2-3]进一步完善,最后由文献[4]完全解决.

    对于完备非紧致的流形,文献[5]通过偏微分方程研究了预定曲率问题;文献[6]研究了与双曲圆盘共形的完备度量的曲率;文献[7]研究了圆盘上具有非正曲率的完备度量;文献[8]研究了洛伦兹流形上的Yamabe问题;文献[9]通过刘维尔方程给出了2维双曲Yamabe问题的一般解,但解的形式比较复杂.

    扭曲乘积度量是微分几何中研究黎曼流形和伪黎曼流形的一种重要的度量形式,文献[10]利用Yamabe方程给出了扭曲乘积流形M×fN的数量曲率和两个因子流形MN的数量曲率之间的关系;文献[11]证明了在某些非紧乘积流形的共形类中,无穷多个具有常数量曲率的完备度量的存在性;文献[12]运用分叉定理和谱定理研究了扭曲乘积流形上Yamabe方程解的多重性.

    旋转对称度量g=dt2+φ2(t)dSn-12是一类特殊的扭曲乘积度量,我们可以通过旋转对称度量来研究2维双曲空间的Yamabe问题. 首先,我们给出了扭曲乘积流形$\mathbb{R}_{+} \times {\varphi} S^{1}$上的Yamabe方程;其次,将标准球面上一般的Yamabe方程的解转化为扭曲乘积形式下Yamabe方程的解;最后,通过类比,找到了扭曲乘积形式下2维双曲Yamabe方程的一组特解.

1.   预备知识
  • B=(BmgB)和F=(FngF)是两个黎曼流形,考虑乘积流形B× F及自然射影ρB×FBηB× FF.

    定义1   如果乘积流形M=B× F上的度量g满足

    其中XY是乘积流形上任意一对向量场,则称g为扭曲乘积度量,函数φB上正的光滑函数,称为扭曲函数. 我们将此度量简记为g=gB+φ2gF,将具有此度量的乘积流形称为扭曲乘积流形,记为B×φF.

    特别地,当B${{\mathbb{R}}_{\text{+}}}$上的开区间IF${{\mathbb{R}}^{n}}$中标准单位球面Sn-1时,扭曲乘积流形I×φSn-1上的度量

    称为旋转对称度量.

    φ=snk(t)是方程组

    的唯一解,以snk(t)为扭曲函数,可得旋转对称度量的一组单参数族$d t^{2}+\operatorname{sn}_{k}^{2}(t) \mathrm{d}S_{n-1}^{2}$[13].

    k=0时,snk(t)=t,流形$\mathbb{R}$+×tSn-1与欧氏空间($\mathbb{R}$nξ)等距,其中ξ为标准欧氏度量.

    k=1时,snk(t)=sint,考虑映射

    可以验证G是一个等距映射,因此流形$\mathbb{R}$+×sintSn-1与标准单位球面(Snh)等距,其中h是球面Sn上的标准度量[13].

    k=-1时,snk(t)=sinht,可以证明流形$\mathbb{R}$+×sinhtSn-1与双曲空间(Hnh1)等距,其中h1为双曲空间上的标准度量(引理1).

    流形(Mng) 上的拉普拉斯算子定义为

    对任意的函数fC(M),在局部坐标图下,有

    Sg${S_{\tilde g}}$分别表示在度量g$\tilde g$下的数量曲率,当n=2时,设$\tilde{g}=\mathrm{e}^{u} g, u \in C^{\infty}(M)$,则

    n≥3时,设$\tilde{g}=v^{\frac{4}{n-2}} g, v \in C^{\infty}(M), v>0$,则

    取球面上的北极点N(0,…,0,1) 为投影中心,通过球极投影

    球面上标准度量h表示为[14]

    ϕ是(Snh)到它自身的共形微分同胚,则$\psi=\pi \circ \phi \circ \pi^{-1}$是($\mathbb{R}$nξ)上的共形微分同胚,从而可写为

    其中AO(n),B是平移变换,记B(x)=π(x)+aC是伸缩变换,记C(x)=λπ(x),λ≠0. 通过计算可得

    因此得球面上的共形变换[3]

    我们知道,标准双曲空间(Hncan)有3个常用的模型,分别为双曲面模型(Hnh1)、庞加莱球模型(Bnh2)和庞加莱半空间模型(Unh3). 取$\mathbb{R}$n+1中双叶双曲面下半支的顶点S(0,…,0,-1)为投影中心,通过双曲球极投影

    双曲空间Hn上的度量h1表示为[14]

2.   主要结果
  • 取(Hnh1)作为我们所用的模型,它是在坐标(τξ1,…,ξn)中由方程τ2-|ξ|2=1定义的$\mathbb{R}$n+1中的双叶双曲面的上半支,具有度量

    其中ιHn$\mathbb{R}$n+1是包含映射,m=-(dτ)2+(dξ1)2+…+(dξn)2$\mathbb{R}$n+1上的Minkowski度量.

    引理1   映射

    是一个等距映射.

       设z=(z1z2,…,zn)为标准单位球面Sn-1上的任意一点,由z12+z22+…+zn2=1得

    从而

    引理1得证.

    下面我们要写出扭曲乘积流形上的Yamabe方程,为此,先给出扭曲乘积形式下的拉普拉斯算子.

    引理2   在扭曲乘积流形(Mng)=($\mathbb{R}$+×Sn-1,dt2+φ2(t)dSn-12)上,对任意的函数fC(M$\mathbb{R}$),有

       首先,黎曼度量g在局部坐标图下可表示为

    其中

    从而$g^{i j}=g_{t}^{i j}=\frac{1}{\varphi^{2}} h^{i j}$. 由(1)式可得

    再由

    可得

    因为iφ=0,则

    整理即得

    引理2得证.

    特别地,当n=2时,在标准单位圆周S1的极坐标下,$\Delta_{h} f=-\frac{\partial^{2} f}{\partial \theta^{2}}$,故扭曲乘积流形$\mathbb{R}$+×φS1上的拉普拉斯算子为

    引理3[13]   (Mng)=($\mathbb{R}$+×Sn-1,dt2+φ2(t)dSn-12)的数量曲率为

    根据(2),(6),(7)式,扭曲乘积流形$\mathbb{R}$+×φS1上的Yamabe方程可写为

    其中μ为常数.

    下面讨论当φ取特殊的函数snk(t)时,扭曲乘积流形($\mathbb{R}$+×S1,dt2+snk2(t)dS12)上的Yamabe方程及其解.

    k=0时,扭曲乘积流形$\mathbb{R}$+×tS1是与$\mathbb{R}$2等距的,而$\mathbb{R}$2的数量曲率为0,设$\tilde g=\mathrm{e}^{u} g$是该扭曲乘积流形上的共形变换,那么Yamabe方程可写为

    我们知道,($\mathbb{R}$2ξ)上的共形变换即为相似变换,共形因子为常值函数,而常值函数恰好是我们所给方程的一组解.

    k=1时,扭曲乘积流形$\mathbb{R}$+×sintS1是与标准单位球面S2等距的.

    定理1   扭曲乘积流形$\mathbb{R}$+×sintS1上的Yamabe方程为

    该方程在μ=2时具有如下形式的解:

    其中λ$\mathbb{R}$+a$\mathbb{R}$2zS1.

      设$\tilde{g}=\mathrm{e}^{u} g$$\mathbb{R}$+×sintS1上的共形变换,将φ(t)=sint代入方程(8)可写出$\tilde g$具有常数量曲率2的Yamabe方程

    考虑等距映射

    z=(cosθ,sinθ)表示单位圆周S1上的任意一点. 那么x=(sintcosθ,sintsinθ,cost)表示S2上的任意一点,由(4)式可得共形因子

    它是我们所给的Yamabe方程的解,定理1得证.

    k=-1时,扭曲乘积流形$\mathbb{R}$+×sinhtS1是与双曲空间(H2h1)等距的. 在双曲球极投影πH2B2下,$\left(\pi^{-1}\right)^{*} h^{1}=\frac{4}{\left(1-|\pi(x)|^{2}\right)^{2}} \xi$,这样的度量形式与上述标准单位球面的度量形式是类似的,且双曲空间的扭曲乘积形式与一般形式之间的等距和球面的情形也是类似的,因此我们可以仿照扭曲乘积形式下标准单位球面的Yamabe方程及其解的形式写出扭曲乘积形式下2维双曲Yamabe方程及其特解.

    定理2   扭曲乘积流形$\mathbb{R}$+×sinhtS1上的Yamabe方程为

    该方程在μ=-2时具有如下形式的解:

    其中λ$\mathbb{R}$+a$\mathbb{R}$2λ2+|a|2 < 1,zS1.

       设$\tilde{g}=\mathrm{e}^{u} g$$\mathbb{R}$+×sinhtS1上的共形变换,将φ(t)=sinht代入方程(8)可写出$\tilde g$具有常数量曲率-2的Yamabe方程

    仿照标准单位球面上的共形变换(4),我们构造双曲空间上的共形变换为

    考虑等距映射

    z=(cosθ,sinθ)表示单位圆周S1上的任意一点. 那么x=(sinhtcosθ,sinhtsinθ,cosht)表示H2上的任意一点,由(9)式可得共形因子

    可以验证它是我们所给方程的一组解,定理2得证.

    我们利用扭曲乘积流形研究了2维双曲Yamabe方程及其特解,但要推广到更高维的双曲空间,甚至更一般的扭曲乘积流形还需要进一步地开展研究.

Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return