Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 48 Issue 2
Article Contents

HE Xinhai, CHEN Xueli, YANG Han. Blow-Up for a Class of Semilinear Time Fractional Order σ-Development Equation with Memory Term[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(2): 33-39. doi: 10.13718/j.cnki.xsxb.2023.02.004
Citation: HE Xinhai, CHEN Xueli, YANG Han. Blow-Up for a Class of Semilinear Time Fractional Order σ-Development Equation with Memory Term[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(2): 33-39. doi: 10.13718/j.cnki.xsxb.2023.02.004

Blow-Up for a Class of Semilinear Time Fractional Order σ-Development Equation with Memory Term

More Information
  • Corresponding author: YANG Han
  • Received Date: 23/06/2022
    Available Online: 20/02/2023
  • MSC: O175.29

  • The blow-up of a class of semilinear time-fractional order σ-development equation solutions with memory terms is studied. By constructing a suitable test function, the finite time blow-up of the solution is proved when the index of the nonlinear term satisfies certain conditions and the upper bound estimate of the life span is obtained, and the range of the obtained index is consistent with the classical blow-up conclusion in the limit case.
  • 加载中
  • [1] PODLUBNY I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.

    Google Scholar

    [2] CARPINTERI A, MAINARDI F. Fractals and Fractional Calculus in Continuum Mechanics[M]. New York: Springer, 1997.

    Google Scholar

    [3] MAINARDI F. Fractional Calculus and Waves in Linear Viscoelasticity[M]. London: Imperial College Press, 2010.

    Google Scholar

    [4] D'ABBICCO M, EBERT M R, PICON T H. The Critical Exponent(s) for the Semilinear Fractional Diffusive Equation[J]. Journal of Fourier Analysis and Applications, 2019, 25(3): 696-731. doi: 10.1007/s00041-018-9627-1

    CrossRef Google Scholar

    [5] MEZADEK A K, REISSIG M. Semi-Linear Fractionalσ-Evolution Equations with Mass or Power Non-Linearity[J]. Nonlinear Differential Equations and Applications, 2018, 25(5): 42-85. doi: 10.1007/s00030-018-0530-x

    CrossRef Google Scholar

    [6] ABDELATIF K M. Semi-Linear Fractionalσ-Evolution Equations with Nonlinear Memory[J]. Journal of Partial Differential Equations, 2020, 33(4): 291-312. doi: 10.4208/jpde.v33.n4.1

    CrossRef Google Scholar

    [7] MEZADEK A K. Global Existence of Small Data Solutions to Semi-Linear Fractionalσ-Evolution Equations with Mass and Nonlinear Memory[J]. Mediterranean Journal of Mathematics, 2020, 17(5): 159-179. doi: 10.1007/s00009-020-01573-9

    CrossRef Google Scholar

    [8] FUJITA H. On the Blowing Up of Solutions of the Cauchy Problem for utu+u1+α[J]. Journal of the Faculty of Science of the University of Toky, 1966, 13: 109-124.

    Google Scholar

    [9] HAYAKAWA K. On Nonexistence of Global Solutions of Some Semilinear Parabolic Differential Equations[J]. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 1973, 49(7): 503-505.

    Google Scholar

    [10] KOBAYASHI K, SIRAO T, TANAKA H. On the Growing Up Problem for Semilinear Heat Equations[J]. Journal of the Mathematical Society of Japan, 1977, 29(3): 407-424.

    Google Scholar

    [11] CAZENAVE T, DICKSTEIN F, WEISSLER F B. An Equation Whose Fujita Critical Exponent is Not Given by Scaling[J]. Nonlinear Analysis, 2008, 68(4): 862-874. doi: 10.1016/j.na.2006.11.042

    CrossRef Google Scholar

    [12] KATO T. Blow-Up of Solutions of Some Nonlinear Hyperbolic Equations[J]. Communications on Pure and Applied Mathematics, 1980, 33(4): 501-505. doi: 10.1002/cpa.3160330403

    CrossRef Google Scholar

    [13] STRAUSS W A. Everywhere Defined Wave Operators. In: Nonlinear Evolution Equations[M]. New York: Academic Press, 1978.

    Google Scholar

    [14] GLASSEY R T. Existence in the Large for □u=F(u) in Two Space Dimensions[J]. Mathematische Zeitschrift, 1981, 178(2): 233-261. doi: 10.1007/BF01262042

    CrossRef Google Scholar

    [15] ZHOU Y. Cauchy Problem for Semilinear Wave Equations in Four Space Dimensions with Small Initial Data[J]. Journal of Partial Differential Equations, 1995, 8(2): 135-144.

    Google Scholar

    [16] GEORGIEV V, LINDBLAD H, SOGGE C D. Weighted Strichartz Estimates and Global Existence for Semilinear Wave Equations[J]. American Journal of Mathematics, 1997, 119(6): 1291-1319. doi: 10.1353/ajm.1997.0038

    CrossRef Google Scholar

    [17] SCHAEFFER J. The Equation uttu=|u|p for the Critical Value of p[J]. Proceedings of the Royal Society of Edinburgh, 1985, 101(1-2): 31-44. doi: 10.1017/S0308210500026135

    CrossRef Google Scholar

    [18] ZHOU Y. Blow Up of Solutions to Semilinear Wave Equations with Critical Exponent in High Dimensions[J]. Chinese Annals of Mathematics(Series B), 2007, 28(2): 205-212. doi: 10.1007/s11401-005-0205-x

    CrossRef Google Scholar

    [19] JOHN F. Blow-Up of Solutions of Nonlinear Wave Equations in Three Space Dimensions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 28(1-3): 235-268.

    Google Scholar

    [20] GLASSEY R T. Finite-Time Blow-Up for Solutions of Nonlinear Wave Equations[J]. Mathematische Zeitschrift, 1981, 177(3): 323-340. doi: 10.1007/BF01162066

    CrossRef Google Scholar

    [21] SAMKO S G, KILBAS A A, MARICHEV O I. Fractional Integrals and Derivatives: Theory and Applications[M]. Yverdon: Gordon and Breach Science Publishers, 1987.

    Google Scholar

    [22] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. New York: Elsevier Science Inc, 2006.

    Google Scholar

    [23] CHEN W H, DAO T A. On the Cauchy Problem for Semilinear Regularity-Loss-Type σ-Evolution Models with Memory Term[J]. Nonlinear Analysis: Real World Applications, 2021, 59: 103265. doi: 10.1016/j.nonrwa.2020.103265

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(810) PDF downloads(174) Cited by(0)

Access History

Other Articles By Authors

Blow-Up for a Class of Semilinear Time Fractional Order σ-Development Equation with Memory Term

    Corresponding author: YANG Han

Abstract: The blow-up of a class of semilinear time-fractional order σ-development equation solutions with memory terms is studied. By constructing a suitable test function, the finite time blow-up of the solution is proved when the index of the nonlinear term satisfies certain conditions and the upper bound estimate of the life span is obtained, and the range of the obtained index is consistent with the classical blow-up conclusion in the limit case.

  • 本文研究以下半线性时间分数阶σ-发展方程的柯西问题:

    其中α∈(0,1),σ≥1,γ∈(0,1),p>1,ε充分小. ∂t1+αu为1+α阶Caputo型分数阶导数,定义为

    这里

    为Riemann-Liouville型积分,Γ(β)为Gamma函数. 算子(-Δ)σ定义为

    上述时间分数阶σ-发展方程(1)在物理学、力学和其他应用科学中有着大量应用[1-3],通常用于刻画具有幂律变特性的粘弹性介质中机械波的传播问题,也可描述介于扩散和波传播模型的中间现象,且这种现象通常发生在粘弹性介质中,融合了表现波传播的类固体材料和支持扩散过程类流体材料的特性,近年来关于该类方程解的适定性研究引起了不少研究者的关注[4-7].

    注意到非线性项有如下性质

    进而有

    因此,当指数γ→1且参数ασ取极限情形时,本文所研究的非线性记忆项的柯西问题(1)可转化为非线性项为|u|p的经典问题. 探讨问题(1)与经典柯西问题解的性质之间的联系是一件很有意义的事情.

    α=0,σ=1,γ=1时,问题(1)转化为如下半线性热传导方程的柯西问题:

    文献[8]给出了其临界指数$\tilde{p}=1+\frac{2}{n}$,即在p> $\tilde{p}$时该问题在小初值情况下存在整体解,1 < p$\tilde{p}$时该问题的解在有限时刻爆破. 对于超临界与次临界的情形,文献[8]分别进行了解的整体存在性与爆破证明,对于临界的情形,文献[9-10]研究了解的爆破情况.

    α=0,σ=1,γ∈(0,1)时,问题(1)则转化为如下带记忆项半线性热传导方程的柯西问题:

    文献[11]证明了在

    时解在有限时刻爆破,并证明了p>på时小初值情况下存在整体解,此处

    可以看到当γ→1时,此时的临界指数与Fujita临界指数一致.

    α=1,σ=1,γ=1时,问题(1)转化为如下半线性波动方程的双初值问题:

    文献[12]在

    p>1,n=1时证明了解在有限时刻爆破. 根据Strauss猜想[13],问题(3)的临界指数p0(n)为二次方程

    的正根,并且在n≥2,p>p0(n)时,问题(3)在小初值情况下存在整体解,在pp0(n)时问题(3)的解在有限时刻爆破. 文献[14-16]在超临界情况下针对不同空间维数证明了整体解的存在性,文献[17-18]在临界情况下、文献[19-20]在次临界情况下分别针对不同空间维数证明了解的有限时刻爆破.

    对于时间分数阶方程,当α∈(0,1),σ=1,γ=1时,问题(1)转化为如下时间分数阶扩散-波动方程的柯西问题:

    文献[4]得到了在小初值情况下,u1=0及u1≠0时该问题的两个临界指数,分别为

    α→0+时,$\tilde{p} \rightarrow 1+\frac{2}{n}$为Fujita临界指数,当α→1$\bar{p} \rightarrow 1+\frac{2}{n-1}$,这与文献[12]所得到的指数相对应.

    文献[6]证明了当小初值$u_0 \in L^1\left(\mathbb{R}^n\right) \cap L^{\infty}\left(\mathbb{R}^n\right)$且指数满足

    时问题(1)存在唯一整体解. 那么在1 < ppc时,问题(1)的解又有怎样的性质呢?本文拟通过构造合适的测试函数,在1 < p < pcp=pc的情形下于不同空间维数中分别证明解在有限时刻爆破,并得到生命跨度上界的估计. 下面给出本文主要结论.

    定理1   当α∈(0,1),σ≥1,γ∈(0,1)时,假设初值$u_0 \in L^1\left(\mathbb{R}^n\right) \cap L^{2}\left(\mathbb{R}^n\right)$且满足

    则问题(1)的解在有限时刻爆破. 且在$p<1+\frac{2 \sigma(2+\alpha-\gamma)}{(1+\alpha) n}<p_c$时,可以得到t∈[0,T]时问题(1)生命跨度的上界估计

    其中

    C是与ε无关的正常数.

    注1   考虑次临界情形p < pc. 当α→0+σ=1,γ→1时,$p_c \rightarrow 1+\frac{2}{n}$为Fujita临界指数,此时要求空间维数n≥1;当α→1σ=1,γ→1时有$p_c \rightarrow 1+\frac{2}{n-1}$,这与文献[12]所得到的指数相对应,此时要求空间维数n≥2.

    考虑临界情形p=pc. 可以看到此时γ不能太靠近1,当α→1σ=1时有$p_c \rightarrow 1+\frac{4-2 \gamma}{n-2+2 \gamma}$,这与文献[11]所得到的临界指数一致.

    定义1[21](Riemann-Liouville型分数阶积分)   令T>0,fL1(0,T),α∈(0,1)阶左侧与右侧Riemann-Liouville型分数阶积分分别定义为

    此处Γ(α)为伽马函数.

    定义2[21](Riemann-Liouville型分数阶导数)   令T>0,fAC[0,T],α∈(0,1)阶左侧与右侧Riemann-Liouville型分数阶导数分别定义为

    对于以上微积分定义,有如下性质成立:

    命题1[21]   令T>0,α∈(0,1),若fJt|Tα(Lp(0,T)),gJ0|tα(Lq(0,T)),则以下分部积分成立:

    其中

    此处要求

    命题2[22]   令T>0,α∈(0,1),则对任意fLr(0,T),1≤r≤∞,等式

    t∈(0,T)上几乎处处成立.

    引理1[23]   令$\langle x\rangle=\left(1+|x|^2\right)^{\frac{1}{2}}$,设$m \in \mathbb{N}, s \in[0, 1)$,则对$\forall q>n$以及$x \in \mathbb{R}^n$,有如下不等式成立:

    此处fg表示存在一正常数C,满足fCg.

    引理2[23]   令σ≥1,记φ=φ(x)=〈xqq>0. 对于任意R>0,定义φR

    则(-Δ)σ(φR)满足以下伸缩变换性质

    在证明爆破之前,通过Caputo型分数阶导数的定义(2)及分部积分公式(6),先给出问题(1)弱解的定义.

    定义3   令p>1,T>0,u0L2($\in \mathbb{R}^n$). 若函数

    且对任意测试函数φR(x)∈H2σ($\in \mathbb{R}^n$),φ(t)∈C2([0,T]),有

    则称u是问题(1)的局部弱解. 若T=∞,则称u是问题(1)的整体弱解.

    现在引入测试函数$\varphi(t)=D_{t \mid T}^{1-\gamma} \tilde{\varphi}(t) \text {, 其中 } \tilde{\varphi}(t)=\omega(t)^\beta$β足够大,

    关于此测试函数,有

    且有如下求导性质:

    引理3[22]   令T>0,α∈(0,1),β>α,对任意t∈[0,T],存在C=C(αβ),有

    以及

    定理1的证明

    引入测试函数

    $\in \mathbb{R}^n$上可积. 这里

    [σ]为σ的取整. 由引理1,可以看出对$\forall \sigma$≥1,有

    现将测试函数$\varphi_{\mathbb{R}}$φ带入(7)式中,有

    ΦR(xt)= $\varphi_R(x) \tilde{\varphi}(t)$,由命题1、命题2以及引理3,可得

    现假设u(xt)为问题(1)的整体解,令$I_R=\int_0^T \int_{R^n}|u|^p {\mathit{{\mathit{\Phi}}}}_R(x, t) \mathrm{d} x \mathrm{~d} t$,下面分别建立I1I2的估计,

    以及

    从而有

    此处p'为p的共轭指数,即$\frac{1}{p}+\frac{1}{p^{\prime}}=1 \text {. 令 } R=T^{\frac{1+\alpha}{2 \sigma}}$,由Young不等式可得

    此处取$\theta \in\left(0, \frac{1}{C^{\prime}}\right)$,进而有

    由(5)式,当且当p < pc时有

    T→∞,可以推出

    u=0,这与假设(4)矛盾,所以问题(1)在次临界条件下不存在整体解.

    p=pc时,有

    此时令

    由(8)式及Young不等式可得

    K足够大时,由(5)式可以推出

    同样产生了矛盾,故问题(1)在临界条件下不存在整体解.

    由(9)式可知

    $p<1+\frac{2 \sigma(2+\alpha-\gamma)}{(1+\alpha) n}<p_c$时即可得到此时生命跨度的上界估计

    其中

    C是与ε无关的正常数.

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return