[1]
|
汪诗华, 胡务义, 丰玉成, 等. 玉米南方型锈病的发生与防治技术[J]. 农业科技通讯, 2003(2):32-33.
Google Scholar
|
[2]
|
梁克恭, 武小菲. 我国玉米锈病的发生与为害情况[J]. 植物保护, 1993, 19(5):34.
Google Scholar
|
[3]
|
HOOKER A L. Corn and Sorghum Rusts[M]//Diseases, Distribution, Epidemiology, and Control. Amsterdam:Elsevier, 1985:207-236.
Google Scholar
|
[4]
|
BREWBAKER J L, KIM S K, SO Y S, et al. General Resistance in Maize to Southern Rust (Puccinia polysora Underw.)[J]. Crop Science, 2011, 51(4):1393-1409.
Google Scholar
|
[5]
|
江凯, 段灿星, 武小菲, 等. 多堆柄锈菌侵染玉米的细胞学及超微结构特征[J]. 植物保护学报, 2015, 42(6):877-883.
Google Scholar
|
[6]
|
FUTRELL M C. Maize associated with cropping[J]. Phytopathology, 1975, 65:1040-1042.
Google Scholar
|
[7]
|
RODRIGUEZ-ARDON R, SCOTT G E, KING S B. Maize Yield Losses Caused by Southern Corn Rust1[J]. Crop Science, 1980, 20(6):812-814.
Google Scholar
|
[8]
|
UNDERWOOD L M. Some New Fungi, Chiefly from Alabama[J]. Bulletin of the Torrey Botanical Club, 1897, 24(2):81.
Google Scholar
|
[9]
|
KRATTIGER A, KULISEK E S, CASELA C R. Diagnosis maize diseases with propretary biotechnology applications transfered from Pioneer Hi-bred International to Brazil and Latin America[J]. ISAAA Briefs, 1998, 9:1-4.
Google Scholar
|
[10]
|
CUMMINS G. Identity and Distribution of Three Rusts of Corn[J]. Phytopathology, 1941, 31(9):856-857.
Google Scholar
|
[11]
|
RAMIREZ-CABRAL N Y Z, KUMAR L, SHABANI F. Global Risk Levels for Corn Rusts (Puccinia sorghi and Puccinia polysora) under Climate Change Projections[J]. Journal of Phytopathology, 2017, 165(9):563-574.
Google Scholar
|
[12]
|
中华人民共和国农业农村部. 《一类农作物病虫害名录(2023年)》[A/OL]. (2023-03-07)[2023-05-03]. http://www.moa.gov.cn/govpublic/ZZYGLS/202303/t20230314_6422981.htm.
Google Scholar
|
[13]
|
REYES G M. An Epidemic Outbreak of the Maize Rust in Eastern and Central Visayas, Philippines[J]. Philipp J Agric, 1953, 18(1-4):115-128.
Google Scholar
|
[14]
|
PAYAK M M. Interception of Puccina polysora Southern Rust of Maize in India[J]. New Delhi:National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute, 1992, 23:1-5.
Google Scholar
|
[15]
|
段定仁, 何宏珍. 海南岛玉米上的多堆柄锈菌[J]. 真菌学报, 1984, 3(2):125-126.
Google Scholar
|
[16]
|
刘玉瑛, 石洁, 王庆雷. 1998年河北省发生南方型玉米锈病[J]. 植物保护, 1999, 25(3):56.
Google Scholar
|
[17]
|
任转滩, 马毅, 任真真, 等. 南方玉米锈病的发生及防治对策[J]. 玉米科学, 2005, 13(4):124-126.
Google Scholar
|
[18]
|
刘杰, 姜玉英, 曾娟, 等. 2015年我国玉米南方锈病重发特点和原因分析[J]. 中国植保导刊, 2016, 36(5):44-47.
Google Scholar
|
[19]
|
赵猛. 2021年黄淮海地区玉米南方锈病发生情况和为害损失调查[J]. 农业科技通讯, 2022(7):118-120.
Google Scholar
|
[20]
|
SUN Q Y, LI L F, GUO F F, et al. Southern Corn Rust Caused by Puccinia polysora Underw:a Review[J]. Phytopathology Research, 2021, 3(1):1-11.
Google Scholar
|
[21]
|
吕印谱, 宋宝安, 李传礼, 等. 河南省2004年夏玉米锈病发生原因及防治对策[J]. 中国植保导刊, 2005, 25(11):15-17.
Google Scholar
|
[22]
|
黄飞燕. 玉米对南方锈病抗性资源筛选及抗病特征[D]. 雅安:四川农业大学, 2011.
Google Scholar
|
[23]
|
袁虹霞, 邢小萍, 李朝海, 等. 不同玉米品种对南方锈病的抗性比较[J]. 玉米科学, 2010, 18(2):107-109.
Google Scholar
|
[24]
|
程平, 汪琪. 安徽省玉米南方锈病的抗性鉴定[J]. 农业灾害研究, 2011, 1(2):21-22, 54.
Google Scholar
|
[25]
|
江凯, 杜青, 秦子惠, 等. 玉米种质资源抗南方锈病鉴定[J]. 植物遗传资源学报, 2013, 14(4):711-714.
Google Scholar
|
[26]
|
陈文娟, 李万昌, 杨知还, 等. 玉米抗南方锈病种质资源初步鉴定及遗传多样性分析[J]. 植物遗传资源学报, 2018, 19(2):225-231, 242.
Google Scholar
|
[27]
|
王睿, 刘金平. 几个玉米品种抗锈病的分析与鉴定[J]. 农业科技通讯, 2019(2):140-143.
Google Scholar
|
[28]
|
鄢洪海, 王琰, 张茹琴, 等. 山东省玉米主导品种抗南方锈病鉴定及对灾情的影响[J]. 玉米科学, 2019, 27(6):175-180.
Google Scholar
|
[29]
|
晏卫红, 覃嘉明, 李焜华, 等. 同一适宜生态区拟引种广西的玉米品种抗病性鉴定与分析[J]. 玉米科学, 2022, 30(1):166-171.
Google Scholar
|
[30]
|
黄莉群, 马玥, 戚新蕾, 等. 玉米品种对不同地区玉米南方锈菌的抗性评价[J]. 作物杂志, 2021(6):205-210.
Google Scholar
|
[31]
|
黄莉群, 张克瑜, 李磊福, 等. 玉米南方锈菌在玉米品种上的相对寄生适合度研究[J]. 中国农业大学学报, 2021, 26(11):1-9.
Google Scholar
|
[32]
|
杨普云, 熊延坤, 尹哲, 等. 绿色防控技术示范工作进展与展望[J]. 中国植保导刊, 2010, 30(4):37-38.
Google Scholar
|
[33]
|
赵中华, 尹哲, 杨普云. 农作物病虫害绿色防控技术应用概况[J]. 植物保护, 2011, 37(3):29-32.
Google Scholar
|
[34]
|
农业部办公厅印发《关于推进农作物病虫害绿色防控的意见》[J]. 中国植保导刊, 2011, 31(6):5-6.
Google Scholar
|
[35]
|
全国农业技术推广服务中心. 全国农技中心组织召开2022年全国农作物病虫害防控工作总结及绿色防控视频会[R]. 2022-12-26.
Google Scholar
|
[36]
|
欧高财, 郑和斌, 任凡, 等. 农作物病虫害绿色防控发展制约因素及解决对策[J]. 中国植保导刊, 2012, 32(8):59-62, 50.
Google Scholar
|
[37]
|
叶金才. 育成我国首例对玉米南方锈病免疫系齐319[J]. 中国农业科学, 2000, 33(4):110.
Google Scholar
|
[38]
|
陈翠霞, 赵延兵, 刘保申, 等. 不同玉米自交系南方锈病的抗性评价[J]. 作物学报, 2004, 30(10):1053-1055, 1069.
Google Scholar
|
[39]
|
任转滩. 玉米抗锈病种质资源的筛选及应用研究[J]. 玉米科学, 2006, 14(4):155-157.
Google Scholar
|
[40]
|
冒宇翔, 薛林, 王莉萍, 等. 玉米抗锈病自交系种质的发掘与评价[J]. 玉米科学, 2017, 25(4):55-61.
Google Scholar
|
[41]
|
张志方, 张素娟, 张守林, 等. 高抗南方锈病玉米自交系浚M9的选育与应用[J]. 玉米科学, 2023, 31(1):9-15.
Google Scholar
|
[42]
|
杨二波, 祝学刚, 胡跃, 等. 国审玉米新品种隆平243的选育及高产栽培技术[J]. 农业科技通讯, 2022(8):195-198.
Google Scholar
|
[43]
|
STOREY H H, RYLAND A K. Resistance to the Maize Rust, Puccinia polysora[J]. Nature, 1954, 173(4408):778-779.
Google Scholar
|
[44]
|
ULLSTRUP A J. Inheritance and Linkage of a Gene Determining Resistance in Maize to an American Race of Fuccinia Polysora[J]. Phytopathology, 1965, 55:425-428.
Google Scholar
|
[45]
|
CHEN C X, WANG Z L, YANG D E, et al. Molecular Tagging and Genetic Mapping of the Disease Resistance Gene RppQ to Southern Corn Rust[J]. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 2004, 108(5):945-950.
Google Scholar
|
[46]
|
ZHOU C J, CHEN C X, CAO P X, et al. Characterization and Fine Mapping of RppQ, a Resistance Gene to Southern Corn Rust in Maize[J]. Molecular Genetics and Genomics, 2007, 278(6):723-728.
Google Scholar
|
[47]
|
ZHAO P F, ZHANG G B, WU X J, et al. Fine Mapping of RppP25, a Southern Rust Resistance Gene in Maize[J]. Journal of Integrative Plant Biology, 2013, 55(5):462-472.
Google Scholar
|
[48]
|
刘章雄, 王守才, 戴景瑞, 等. 玉米P25自交系抗锈病基因的遗传分析及SSR分子标记定位[J]. 遗传学报, 2003, 30(8):706-710.
Google Scholar
|
[49]
|
ZHANG Y, XU L, ZHANG D F, et al. Mapping of Southern Corn Rust-Resistant Genes in the W2D Inbred Line of Maize (Zea mays L.)[J]. Molecular Breeding, 2010, 25(3):433-439.
Google Scholar
|
[50]
|
姚国旗, 单娟, 曹冰, 等. 玉米自交系CML470抗南方锈病基因的定位[J]. 植物遗传资源学报, 2013, 14(3):518-522.
Google Scholar
|
[51]
|
WU X J, LI N, ZHAO P F, et al. Geographic and Genetic Identification of RppS, a Novel Locus Conferring Broad Resistance to Southern Corn Rust Disease in China[J]. Euphytica, 2015, 205(1):17-23.
Google Scholar
|
[52]
|
WANG S, ZHANG R Y, SHI Z, et al. Identification and Fine Mapping of RppM, a Southern Corn Rust Resistance Gene in Maize[J]. Frontiers in Plant Science, 2020, 11:1057.
Google Scholar
|
[53]
|
LV M, DENG C, LI X Y, et al. Identification and Fine-Mapping of RppCML496, a Major QTL for Resistance to Puccinia polysora in Maize[J]. The Plant Genome, 2021, 14(1):e20062.
Google Scholar
|
[54]
|
CHEN G S, ZHANG B, DING J Q, et al. Cloning Southern Corn Rust Resistant Gene RppK and Its Cognate Gene AvrRppK from Puccinia polysora[J]. Nature Communications, 2022, 13:4392.
Google Scholar
|
[55]
|
艾堂顺, 田志强, 李会敏, 等. 玉米南方锈病抗病QTL鉴定和效应分析[J]. 河南农业大学学报, 2018, 52(4):514-518.
Google Scholar
|
[56]
|
陈文娟, 路璐, 李万昌, 等. 玉米抗南方锈病基因的QTL定位[J]. 植物遗传资源学报, 2019, 20(3):521-529.
Google Scholar
|
[57]
|
王兵伟, 覃嘉明, 时成俏, 等. 一个高抗玉米南方锈病基因的QTL定位及遗传分析[J]. 中国农业科学, 2019, 52(12):2033-2041.
Google Scholar
|
[58]
|
路璐. 玉米抗南方锈病基因挖掘和精细定位[D]. 北京:中国农业科学院,2020.
Google Scholar
|
[59]
|
DENG C, LEONARD A, CAHILL J, et al. The RPPC-AvrRppC NLR-Effector Interaction Mediates the Resistance to Southern Corn Rust in Maize[J]. Molecular Plant, 2022, 15(5):904-912.
Google Scholar
|
[60]
|
SIYUAN C, XIA J, YINGYING D, et al. Detection of Wheat Stripe Rust using Solar-Induced Chlorophyll Fluorescence and Reflectance Spectral Indices[J]. Remote sensing technology and application, 2019, 34(3):511-520.
Google Scholar
|
[61]
|
MAHLEIN A K, OERKE E C, STEINER U, et al. Recent Advances in Sensing Plant Diseases for Precision Crop Protection[J]. European Journal of Plant Pathology, 2012, 133(1):197-209.
Google Scholar
|
[62]
|
GAO J M, DING M L, SUN Q Y, et al. Classification of Southern Corn Rust Severity Based on Leaf-Level Hyperspectral Data Collected under Solar Illumination[J]. Remote Sensing, 2022, 14(11):2551.
Google Scholar
|
[63]
|
CHAERLE L, DE BOEVER F, VAN MONTAGU M, et al. Thermographic Visualization of Cell Death in Tobacco and Arabidopsis[J]. Plant, Cell & Environment, 2001, 24(1):15-25.
Google Scholar
|
[64]
|
BAURIEGEL E, HERPPICH W. Hyperspectral and Chlorophyll Fluorescence Imaging for Early Detection of Plant Diseases, with Special Reference to Fusarium Spec. Infections on Wheat[J]. Agriculture, 2014, 4(1):32-57.
Google Scholar
|
[65]
|
CHAERLE L, HAGENBEEK D, DE BRUYNE E, et al. Thermal and Chlorophyll-Fluorescence Imaging Distinguish Plant-Pathogen Interactions at an Early Stage[J]. Plant and Cell Physiology, 2004, 45(7):887-896.
Google Scholar
|
[66]
|
SHENG B, HUANG X W, XIAO S, et al. Artificial Cervical Disk Replacement for the Treatment of Adjacent Segment Disease after Anterior Cervical Decompression and Fusion[J]. Clinical Spine Surgery:A Spine Publication, 2017, 30(5):E587-E591.
Google Scholar
|
[67]
|
LETSOIN S M A, PURWESTRI R C, PERDANA M C, et al. Monitoring of Paddy and Maize Fields Using Sentinel-1 SAR Data and NGB Images:a Case Study in Papua, Indonesia[J]. Processes, 2023, 11(3):647.
Google Scholar
|
[68]
|
ZHANG J C, HUANG Y B, PU R L, et al. Monitoring Plant Diseases and Pests through Remote Sensing Technology:aReview[J]. Computers and Electronics in Agriculture, 2019, 165:104943.
Google Scholar
|
[69]
|
KHAN A, VIBHUTE A D, MALI S, et al. A Systematic Review on Hyperspectral Imaging Technology with a Machine and Deep Learning Methodology for Agricultural Applications[J]. Ecological Informatics, 2022, 69:101678.
Google Scholar
|
[70]
|
LOLADZE A, RODRIGUES F A, TOLEDO F, et al. Application of Remote Sensing for Phenotyping Tar Spot Complex Resistance in Maize[J]. Frontiers in Plant Science, 2019, 10:552.
Google Scholar
|
[71]
|
ZHU W J, CHEN H, CIECHANOWSKA I, et al. Application of Infrared Thermal Imaging for the Rapid Diagnosis of Crop Disease[J]. IFAC-PapersOnLine, 2018, 51(17):424-430.
Google Scholar
|
[72]
|
ASHAPURE A, JUNG J, YEOM J, et al. A Novel Framework to Detect Conventional Tillage and No-Tillage Cropping System Effect on Cotton Growth and Development Using Multi-Temporal UAS Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:49-64.
Google Scholar
|
[73]
|
姜玉英, 罗金燕, 罗德平, 等. 远程控制病菌孢子捕捉仪对小麦气传病害的监测效果[J]. 植物保护, 2015, 41(6):163-168.
Google Scholar
|
[74]
|
RIEUX A, SOUBEYRAND S, BONNOT F, et al. Long-Distance Wind-Dispersal of Spores in a Fungal Plant Pathogen:Estimation of Anisotropic Dispersal Kernels from an Extensive Field Experiment[J]. PLoS One, 2014, 9(8):e103225.
Google Scholar
|
[75]
|
闫征远, 范洁茹, 刘伟, 等. 基于田间空气中病菌孢子浓度的小麦白粉病病情估计模型研究[J]. 植物病理学报, 2017, 47(2):253-261.
Google Scholar
|
[76]
|
CAO X R, YAO D M, XU X M, et al. Development of Weather-and Airborne Inoculum-Based Models to Describe Disease Severity of Wheat Powdery Mildew[J]. Plant Disease, 2015, 99(3):395-400.
Google Scholar
|
[77]
|
龚国淑, 姚凯凯. 孢子捕捉仪在植物病害监测中的应用[J]. 植物保护学报, 2022, 49(3):721-730.
Google Scholar
|
[78]
|
王晓鸣, 刘骏, 郭云燕, 等. 中国玉米南方锈病初侵染源的多源性[J]. 玉米科学, 2020, 28(3):1-14, 30.
Google Scholar
|
[79]
|
刘章雄, 王守才. 玉米锈病研究进展[J]. 玉米科学, 2003, 11(4):76-79.
Google Scholar
|
[80]
|
董佳玉, 黄莉群, 马占鸿. 玉米南方锈病农业防治措施初探[C]//病虫防护与生物安全——中国植物保护学会2021年学术年会论文集. 北京:中国农业科学技术出版社, 2021.
Google Scholar
|
[81]
|
高建孟, 黄莉群, 董佳玉, 等. 品种混种对玉米南方锈病发病情况的影响[C]//中国植物病理学会2021年论文集. 北京:中国农业科学技术出版社, 2021.
Google Scholar
|
[82]
|
邹元元, 贺长兴, 周文娟. 玉米大豆复合种植技术的应用研究[J]. 中国粮油学报, 2019, (6):27-30.
Google Scholar
|
[83]
|
马晓丽, 吕慧, 郑洪江. 玉米大豆复合种植的优化模式与效益分析[J]. 中国种业, 2020, 37(4):29-31.
Google Scholar
|
[84]
|
KUHLMAN E G. Efficacy of Darluca Filum for Biological Control of Cronartium fusiforme and C. strobilinum[J]. Phytopathology, 1978, 68(3):507.
Google Scholar
|
[85]
|
PEI M H, HUNTER T, RUIZ C, et al. Quantitative Inoculation of Willow Rust Melampsora larici-epitea with the Mycoparasite sphaerellopsis Filum (Teleomorph Eudarluca caricis)[J]. Mycological Research, 2003, 107(1):57-63.
Google Scholar
|
[86]
|
NISCHWITZ C, NEWCOMBE G, ANDERSON C L. Host Specialization of the Mycoparasite Eudarluca caricis and Its Evolutionary Relationship to Ampelomyces[J]. Mycological Research, 2005, 109(4):421-428.
Google Scholar
|
[87]
|
ZAPATA P A G. Characterization of the natural enemies of rust fungi (Pucciniales)[D]. Purdue University Graduate School, 2022.
Google Scholar
|
[88]
|
孙志强, 董佳玉, 马占鸿. 一种玉米南方锈病生防真菌的开发研究[C]//中国植物病理学会2021年学术年会论文集. 北京:中国农业科学技术出版社, 2021.
Google Scholar
|
[89]
|
赵晨晨, 焦铸锦, 庞发虎, 等. 生防菌R-4的鉴定及其对玉米南方锈病的防效[J]. 玉米科学, 2017, 25(2):136-141.
Google Scholar
|
[90]
|
HAMMOND P M, LAWRENCE J F. Mycophagy in Insects:ASummary[M]//Insect-fungus Interactions. Amsterdam:Elsevier, 1989:275-324.
Google Scholar
|
[91]
|
BRUNS T D. Insect mycophagy in the Boletales:fungivore diversity and the mushroom habitat[J]. Fungus-Insect Relationships-Perspectives in Ecology and Evolution, 1984(1), 446-479.
Google Scholar
|
[92]
|
HENK D A, FARR D F, AIME M C. Mycodiplosis (Diptera) Infestation of Rust Fungi is Frequent, Wide Spread and Possibly Host Specific[J]. Fungal Ecology, 2011, 4(4):284-289.
Google Scholar
|
[93]
|
Revision in Mitteleuropa Vorkommender Mycophage Gallmücken der Mycodiplosis-Gruppe (Diptera, Cecidomyiidae) unter Berücksichtigung ihrer Wirtsspezifität[M]. Universität Stuttgart, 1970.
Google Scholar
|
[94]
|
SILVA D D, MENDES S M, PARREIRA D F, et al. Fungivory:a New and Complex Ecological Function of Doru Luteipes (Scudder) (Dermaptera:Forficulidae)[J]. Brazilian Journal of Biology, 2022, 82:e238763-e238763..
Google Scholar
|
[95]
|
ANAGNOSTAKIS S L. Biological Control of Chestnut Blight[J]. Science, 1982, 215(4532):466-471.
Google Scholar
|
[96]
|
DARISSA O, ADAM G, SCHÄFER W. A dsRNA Mycovirus Causes Hypovirulence of Fusarium graminearum to Wheat and Maize[J]. European Journal of Plant Pathology, 2012, 134(1):181-189.
Google Scholar
|
[97]
|
URAYAMA S, KATO S, SUZUKI Y, et al. Mycoviruses Related to Chrysovirus Affect Vegetative Growth in the Rice Blast Fungus Magnaporthe oryzae[J]. Journal of General Virology, 2010, 91(12):3085-3094.
Google Scholar
|
[98]
|
LIU H, WANG H, LIAO X L, et al. Mycoviral Gene Integration Converts a Plant Pathogenic Fungus into a Biocontrol Agent[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(50):e2214096119.
Google Scholar
|
[99]
|
ZHENG L, LU X A, LIANG X F, et al. Molecular Characterization of Novel Totivirus-Like Double-Stranded RNAs from Puccinia striiformis F. Sp. Tritici, the Causal Agent of Wheat Stripe Rust[J]. Frontiers in Microbiology, 2017, 8:1960.
Google Scholar
|
[100]
|
ZHANG Y H, LIANG X F, ZHAO M X, et al. A Novel Ambigrammatic Mycovirus, PsV5, Works Hand in Glove with Wheat Stripe Rust Fungus to Facilitate Infection[J]. Plant Communications, 2023, 4(3):100505.
Google Scholar
|
[101]
|
PRYOR A, BOELEN M G. A Double-Stranded RNA Mycovirus from the Maize Rust Puccinia sorghi[J]. Canadian Journal of Botany, 1987, 65(11):2380-2383.
Google Scholar
|
[102]
|
AN C F, MOU Z L. Salicylic Acid and Its Function in Plant ImmunityF[J]. Journal of Integrative Plant Biology, 2011, 53(6):412-428.
Google Scholar
|
[103]
|
WASTERNACK C, HAUSE B. Jasmonates:Biosynthesis, Perception, Signal Transduction and Action in Plant Stress Response, Growth and Development. anUpdate to the 2007 Review in Annals of Botany[J]. Annals of Botany, 2013, 111(6):1021-1058.
Google Scholar
|
[104]
|
LIU S F, JIANG J C, MA Z H, et al. The Role of Hydroxycinnamic Acid Amide Pathway in Plant Immunity[J]. Frontiers in Plant Science, 2022, 13:922119.
Google Scholar
|
[105]
|
YANG Y H, ZHAO J, LIU P, et al. Glycerol-3-Phosphate Metabolism in Wheat Contributes to Systemic Acquired Resistance Against Puccinia striiformis F. Sp. Tritici[J]. PLoS One, 2013, 8(11):e81756.
Google Scholar
|
[106]
|
马金慧, 杨克泽, 徐志鹏, 等. 不同植物免疫诱抗剂对玉米茎基腐病菌的抑制效果和田间防效[J]. 农药, 2022, 61(11):840-844.
Google Scholar
|
[107]
|
SRIVASTAVA M P, GUPTA S, SHARMA Y K. Detection of Siderophore Production from Different Cultural Variables by CAS-Agar Plate Assay[J]. Asian Journal of Pharmacy and Pharmacology, 2018, 4(1):66-69.
Google Scholar
|
[108]
|
DE PALMA M, SALZANO M, VILLANO C, et al. Transcriptome Reprogramming, Epigenetic Modifications and Alternative Splicing Orchestrate the Tomato Root Response to the Beneficial Fungus Trichoderma harzianum[J]. Horticulture Research, 2019, 6:5.
Google Scholar
|
[109]
|
MALINICH E A, WANG K, MUKHERJEE P K, et al. Differential Expression Analysis of Trichoderma Virens RNA Reveals a Dynamic Transcriptome during Colonization of Zea mays Roots[J]. BMC Genomics, 2019, 20(1):1-19.
Google Scholar
|
[110]
|
张广志, 文成敬. 木霉对玉米纹枯病的生物防治[J]. 植物保护学报, 2005, 32(4):353-356.
Google Scholar
|
[111]
|
LIMDOLTHAMAND S, SONGKUMARN P, SUWANNARAT S, et al. Biocontrol Efficacy of Endophytic Trichoderma SPP. in Fresh and Dry Powder Formulations in Controlling Northern Corn Leaf Blight in Sweet Corn[J]. Biological Control, 2023, 181:105217.
Google Scholar
|
[112]
|
ESMAIL S M, OMAR G E, MOURAD A M I. In-Depth Understanding of the Genetic Control of Stripe Rust Resistance (Puccinia striiformis F. sp. tritici) Induced in Wheat (Triticum aestivum) by Trichoderma asperellum T34[J]. Plant Disease, 2023, 107(2):457-472.
Google Scholar
|
[113]
|
AMARA A A, SALEM-BEKHIT M M, ALANAZI F K. Sponge-Like:a New Protocol for Preparing Bacterial Ghosts[J]. The Scientific World Journal, 2013, 2013:545741.
Google Scholar
|
[114]
|
AMARA A A, SALEM-BEKH M M, ALANAZI F K. Preparation of Bacterial Ghosts for E. Coli JM109 Using "Sponge-Like Reduced Protocol"[J]. Asian Journal of Biological Sciences, 2013, 6(8):363-369.
Google Scholar
|
[115]
|
SHEWEITA S A, BATAH A M, GHAZY A A, et al. A New Strain of Acinetobacter baumannii and Characterization of Its Ghost as a Candidate Vaccine[J]. Journal of Infection and Public Health, 2019, 12(6):831-842.
Google Scholar
|
[116]
|
EL-BAKY N, SHARAF M M, AMER E, et al. Protein and DNA Isolation from Aspergillus niger as Well as Ghost Cells Formation[J]. SOJ Biochemistry, 2018, 4(1):1-7.
Google Scholar
|
[117]
|
EL-BAKY N, SHARAF M M, AMER E,et al. The Minimum Inhibition and Growth Concentrations for Controlling Fungal Infections as Well as Ghost Cells Preparation:Aspergillus Flavus as a Model[J]. Biomedical Journal of Scientific & Technical Research, 2018, 10(2):1-5.
Google Scholar
|
[118]
|
EL-BAKY N A, ABDEL RAHMAN R A, SHARAF M M, et al. The Development of a Phytopathogenic Fungi Control Trial:Aspergillus flavus and Aspergillus niger Infection in Jojoba Tissue Culture as a Model[J]. The Scientific World Journal, 2021, 2021:1-8.
Google Scholar
|
[119]
|
VINITHAS, SWEETLIN S, VINUSHAH, etal. Disease Prediction Using Machine Learning over Big Data[J]. SSRN Electronic Journal, 2017, 17(1):26-34.
Google Scholar
|
[120]
|
JAIN R, MINZ S, RAMASUBRAMANIAN V. Machine Learning for Forewarning Crop Diseases[J]. Journal of the Indian Society of Agricultural Statistics, 2009, 63(1):97-107.
Google Scholar
|
[121]
|
谭文学. 基于机器学习的作物病害图像处理及病变识别方法研究[D]. 北京:北京工业大学, 2016.
Google Scholar
|
[122]
|
许世卫, 王东杰, 李哲敏. 大数据推动农业现代化应用研究[J]. 中国农业科学, 2015, 48(17):3429-3438.
Google Scholar
|
[123]
|
濮永仙. 计算机视觉在作物病害诊断中的研究进展[J]. 智能计算机与应用, 2015, 5(2):68-72.
Google Scholar
|