Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 2 Issue 3
Article Contents

WANG Wenbao, MA Zihui, CHEN Dezhi, et al. Study on the Epidemic Status of Southern Corn Rust and Green Prevention and Control Strategies[J]. PLANT HEALTH AND MEDICINE, 2023, (3): 16-30. doi: 10.13718/j.cnki.zwyx.2023.03.002
Citation: WANG Wenbao, MA Zihui, CHEN Dezhi, et al. Study on the Epidemic Status of Southern Corn Rust and Green Prevention and Control Strategies[J]. PLANT HEALTH AND MEDICINE, 2023, (3): 16-30. doi: 10.13718/j.cnki.zwyx.2023.03.002

Study on the Epidemic Status of Southern Corn Rust and Green Prevention and Control Strategies

More Information
  • Received Date: 01/05/2023
  • MSC: S435.131.4

  • Southern corn rust (SCR) is a fungal disease that significantly impacts corn production in China. In recent years, green prevention and control based on the entire farmland ecosystem has emerged as a promising agricultural pest management method. Currently, a series of green prevention and control technologies for SCR have been used, but they are fragmented and lack a systematic approach. This paper aims to systematically understand the current research status and future trends in the field of green prevention and control of SCR. To achieve this purpose, in this paper, the occurrence situation of southern corn rust disease in China was introduced, and the green prevention and control measures of southern corn rust disease were systematically expounded, including monitoring and early warning, disease-resistance germplasm and genes, ecological regulation, and biological control methods. Additionally, this paper outlines potential green prevention and control methods for SCR and clarifies the application prospect of green prevention and control technology, in order to provide reference information for the establishment of a green prevention and control system for SCR.
  • 加载中
  • [1] 汪诗华, 胡务义, 丰玉成, 等. 玉米南方型锈病的发生与防治技术[J]. 农业科技通讯, 2003(2):32-33.

    Google Scholar

    [2] 梁克恭, 武小菲. 我国玉米锈病的发生与为害情况[J]. 植物保护, 1993, 19(5):34.

    Google Scholar

    [3] HOOKER A L. Corn and Sorghum Rusts[M]//Diseases, Distribution, Epidemiology, and Control. Amsterdam:Elsevier, 1985:207-236.

    Google Scholar

    [4] BREWBAKER J L, KIM S K, SO Y S, et al. General Resistance in Maize to Southern Rust (Puccinia polysora Underw.)[J]. Crop Science, 2011, 51(4):1393-1409.

    Google Scholar

    [5] 江凯, 段灿星, 武小菲, 等. 多堆柄锈菌侵染玉米的细胞学及超微结构特征[J]. 植物保护学报, 2015, 42(6):877-883.

    Google Scholar

    [6] FUTRELL M C. Maize associated with cropping[J]. Phytopathology, 1975, 65:1040-1042.

    Google Scholar

    [7] RODRIGUEZ-ARDON R, SCOTT G E, KING S B. Maize Yield Losses Caused by Southern Corn Rust1[J]. Crop Science, 1980, 20(6):812-814.

    Google Scholar

    [8] UNDERWOOD L M. Some New Fungi, Chiefly from Alabama[J]. Bulletin of the Torrey Botanical Club, 1897, 24(2):81.

    Google Scholar

    [9] KRATTIGER A, KULISEK E S, CASELA C R. Diagnosis maize diseases with propretary biotechnology applications transfered from Pioneer Hi-bred International to Brazil and Latin America[J]. ISAAA Briefs, 1998, 9:1-4.

    Google Scholar

    [10] CUMMINS G. Identity and Distribution of Three Rusts of Corn[J]. Phytopathology, 1941, 31(9):856-857.

    Google Scholar

    [11] RAMIREZ-CABRAL N Y Z, KUMAR L, SHABANI F. Global Risk Levels for Corn Rusts (Puccinia sorghi and Puccinia polysora) under Climate Change Projections[J]. Journal of Phytopathology, 2017, 165(9):563-574.

    Google Scholar

    [12] 中华人民共和国农业农村部. 《一类农作物病虫害名录(2023年)》[A/OL]. (2023-03-07)[2023-05-03]. http://www.moa.gov.cn/govpublic/ZZYGLS/202303/t20230314_6422981.htm.

    Google Scholar

    [13] REYES G M. An Epidemic Outbreak of the Maize Rust in Eastern and Central Visayas, Philippines[J]. Philipp J Agric, 1953, 18(1-4):115-128.

    Google Scholar

    [14] PAYAK M M. Interception of Puccina polysora Southern Rust of Maize in India[J]. New Delhi:National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute, 1992, 23:1-5.

    Google Scholar

    [15] 段定仁, 何宏珍. 海南岛玉米上的多堆柄锈菌[J]. 真菌学报, 1984, 3(2):125-126.

    Google Scholar

    [16] 刘玉瑛, 石洁, 王庆雷. 1998年河北省发生南方型玉米锈病[J]. 植物保护, 1999, 25(3):56.

    Google Scholar

    [17] 任转滩, 马毅, 任真真, 等. 南方玉米锈病的发生及防治对策[J]. 玉米科学, 2005, 13(4):124-126.

    Google Scholar

    [18] 刘杰, 姜玉英, 曾娟, 等. 2015年我国玉米南方锈病重发特点和原因分析[J]. 中国植保导刊, 2016, 36(5):44-47.

    Google Scholar

    [19] 赵猛. 2021年黄淮海地区玉米南方锈病发生情况和为害损失调查[J]. 农业科技通讯, 2022(7):118-120.

    Google Scholar

    [20] SUN Q Y, LI L F, GUO F F, et al. Southern Corn Rust Caused by Puccinia polysora Underw:a Review[J]. Phytopathology Research, 2021, 3(1):1-11.

    Google Scholar

    [21] 吕印谱, 宋宝安, 李传礼, 等. 河南省2004年夏玉米锈病发生原因及防治对策[J]. 中国植保导刊, 2005, 25(11):15-17.

    Google Scholar

    [22] 黄飞燕. 玉米对南方锈病抗性资源筛选及抗病特征[D]. 雅安:四川农业大学, 2011.

    Google Scholar

    [23] 袁虹霞, 邢小萍, 李朝海, 等. 不同玉米品种对南方锈病的抗性比较[J]. 玉米科学, 2010, 18(2):107-109.

    Google Scholar

    [24] 程平, 汪琪. 安徽省玉米南方锈病的抗性鉴定[J]. 农业灾害研究, 2011, 1(2):21-22, 54.

    Google Scholar

    [25] 江凯, 杜青, 秦子惠, 等. 玉米种质资源抗南方锈病鉴定[J]. 植物遗传资源学报, 2013, 14(4):711-714.

    Google Scholar

    [26] 陈文娟, 李万昌, 杨知还, 等. 玉米抗南方锈病种质资源初步鉴定及遗传多样性分析[J]. 植物遗传资源学报, 2018, 19(2):225-231, 242.

    Google Scholar

    [27] 王睿, 刘金平. 几个玉米品种抗锈病的分析与鉴定[J]. 农业科技通讯, 2019(2):140-143.

    Google Scholar

    [28] 鄢洪海, 王琰, 张茹琴, 等. 山东省玉米主导品种抗南方锈病鉴定及对灾情的影响[J]. 玉米科学, 2019, 27(6):175-180.

    Google Scholar

    [29] 晏卫红, 覃嘉明, 李焜华, 等. 同一适宜生态区拟引种广西的玉米品种抗病性鉴定与分析[J]. 玉米科学, 2022, 30(1):166-171.

    Google Scholar

    [30] 黄莉群, 马玥, 戚新蕾, 等. 玉米品种对不同地区玉米南方锈菌的抗性评价[J]. 作物杂志, 2021(6):205-210.

    Google Scholar

    [31] 黄莉群, 张克瑜, 李磊福, 等. 玉米南方锈菌在玉米品种上的相对寄生适合度研究[J]. 中国农业大学学报, 2021, 26(11):1-9.

    Google Scholar

    [32] 杨普云, 熊延坤, 尹哲, 等. 绿色防控技术示范工作进展与展望[J]. 中国植保导刊, 2010, 30(4):37-38.

    Google Scholar

    [33] 赵中华, 尹哲, 杨普云. 农作物病虫害绿色防控技术应用概况[J]. 植物保护, 2011, 37(3):29-32.

    Google Scholar

    [34] 农业部办公厅印发《关于推进农作物病虫害绿色防控的意见》[J]. 中国植保导刊, 2011, 31(6):5-6.

    Google Scholar

    [35] 全国农业技术推广服务中心. 全国农技中心组织召开2022年全国农作物病虫害防控工作总结及绿色防控视频会[R]. 2022-12-26.

    Google Scholar

    [36] 欧高财, 郑和斌, 任凡, 等. 农作物病虫害绿色防控发展制约因素及解决对策[J]. 中国植保导刊, 2012, 32(8):59-62, 50.

    Google Scholar

    [37] 叶金才. 育成我国首例对玉米南方锈病免疫系齐319[J]. 中国农业科学, 2000, 33(4):110.

    Google Scholar

    [38] 陈翠霞, 赵延兵, 刘保申, 等. 不同玉米自交系南方锈病的抗性评价[J]. 作物学报, 2004, 30(10):1053-1055, 1069.

    Google Scholar

    [39] 任转滩. 玉米抗锈病种质资源的筛选及应用研究[J]. 玉米科学, 2006, 14(4):155-157.

    Google Scholar

    [40] 冒宇翔, 薛林, 王莉萍, 等. 玉米抗锈病自交系种质的发掘与评价[J]. 玉米科学, 2017, 25(4):55-61.

    Google Scholar

    [41] 张志方, 张素娟, 张守林, 等. 高抗南方锈病玉米自交系浚M9的选育与应用[J]. 玉米科学, 2023, 31(1):9-15.

    Google Scholar

    [42] 杨二波, 祝学刚, 胡跃, 等. 国审玉米新品种隆平243的选育及高产栽培技术[J]. 农业科技通讯, 2022(8):195-198.

    Google Scholar

    [43] STOREY H H, RYLAND A K. Resistance to the Maize Rust, Puccinia polysora[J]. Nature, 1954, 173(4408):778-779.

    Google Scholar

    [44] ULLSTRUP A J. Inheritance and Linkage of a Gene Determining Resistance in Maize to an American Race of Fuccinia Polysora[J]. Phytopathology, 1965, 55:425-428.

    Google Scholar

    [45] CHEN C X, WANG Z L, YANG D E, et al. Molecular Tagging and Genetic Mapping of the Disease Resistance Gene RppQ to Southern Corn Rust[J]. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 2004, 108(5):945-950.

    Google Scholar

    [46] ZHOU C J, CHEN C X, CAO P X, et al. Characterization and Fine Mapping of RppQ, a Resistance Gene to Southern Corn Rust in Maize[J]. Molecular Genetics and Genomics, 2007, 278(6):723-728.

    Google Scholar

    [47] ZHAO P F, ZHANG G B, WU X J, et al. Fine Mapping of RppP25, a Southern Rust Resistance Gene in Maize[J]. Journal of Integrative Plant Biology, 2013, 55(5):462-472.

    Google Scholar

    [48] 刘章雄, 王守才, 戴景瑞, 等. 玉米P25自交系抗锈病基因的遗传分析及SSR分子标记定位[J]. 遗传学报, 2003, 30(8):706-710.

    Google Scholar

    [49] ZHANG Y, XU L, ZHANG D F, et al. Mapping of Southern Corn Rust-Resistant Genes in the W2D Inbred Line of Maize (Zea mays L.)[J]. Molecular Breeding, 2010, 25(3):433-439.

    Google Scholar

    [50] 姚国旗, 单娟, 曹冰, 等. 玉米自交系CML470抗南方锈病基因的定位[J]. 植物遗传资源学报, 2013, 14(3):518-522.

    Google Scholar

    [51] WU X J, LI N, ZHAO P F, et al. Geographic and Genetic Identification of RppS, a Novel Locus Conferring Broad Resistance to Southern Corn Rust Disease in China[J]. Euphytica, 2015, 205(1):17-23.

    Google Scholar

    [52] WANG S, ZHANG R Y, SHI Z, et al. Identification and Fine Mapping of RppM, a Southern Corn Rust Resistance Gene in Maize[J]. Frontiers in Plant Science, 2020, 11:1057.

    Google Scholar

    [53] LV M, DENG C, LI X Y, et al. Identification and Fine-Mapping of RppCML496, a Major QTL for Resistance to Puccinia polysora in Maize[J]. The Plant Genome, 2021, 14(1):e20062.

    Google Scholar

    [54] CHEN G S, ZHANG B, DING J Q, et al. Cloning Southern Corn Rust Resistant Gene RppK and Its Cognate Gene AvrRppK from Puccinia polysora[J]. Nature Communications, 2022, 13:4392.

    Google Scholar

    [55] 艾堂顺, 田志强, 李会敏, 等. 玉米南方锈病抗病QTL鉴定和效应分析[J]. 河南农业大学学报, 2018, 52(4):514-518.

    Google Scholar

    [56] 陈文娟, 路璐, 李万昌, 等. 玉米抗南方锈病基因的QTL定位[J]. 植物遗传资源学报, 2019, 20(3):521-529.

    Google Scholar

    [57] 王兵伟, 覃嘉明, 时成俏, 等. 一个高抗玉米南方锈病基因的QTL定位及遗传分析[J]. 中国农业科学, 2019, 52(12):2033-2041.

    Google Scholar

    [58] 路璐. 玉米抗南方锈病基因挖掘和精细定位[D]. 北京:中国农业科学院,2020.

    Google Scholar

    [59] DENG C, LEONARD A, CAHILL J, et al. The RPPC-AvrRppC NLR-Effector Interaction Mediates the Resistance to Southern Corn Rust in Maize[J]. Molecular Plant, 2022, 15(5):904-912.

    Google Scholar

    [60] SIYUAN C, XIA J, YINGYING D, et al. Detection of Wheat Stripe Rust using Solar-Induced Chlorophyll Fluorescence and Reflectance Spectral Indices[J]. Remote sensing technology and application, 2019, 34(3):511-520.

    Google Scholar

    [61] MAHLEIN A K, OERKE E C, STEINER U, et al. Recent Advances in Sensing Plant Diseases for Precision Crop Protection[J]. European Journal of Plant Pathology, 2012, 133(1):197-209.

    Google Scholar

    [62] GAO J M, DING M L, SUN Q Y, et al. Classification of Southern Corn Rust Severity Based on Leaf-Level Hyperspectral Data Collected under Solar Illumination[J]. Remote Sensing, 2022, 14(11):2551.

    Google Scholar

    [63] CHAERLE L, DE BOEVER F, VAN MONTAGU M, et al. Thermographic Visualization of Cell Death in Tobacco and Arabidopsis[J]. Plant, Cell & Environment, 2001, 24(1):15-25.

    Google Scholar

    [64] BAURIEGEL E, HERPPICH W. Hyperspectral and Chlorophyll Fluorescence Imaging for Early Detection of Plant Diseases, with Special Reference to Fusarium Spec. Infections on Wheat[J]. Agriculture, 2014, 4(1):32-57.

    Google Scholar

    [65] CHAERLE L, HAGENBEEK D, DE BRUYNE E, et al. Thermal and Chlorophyll-Fluorescence Imaging Distinguish Plant-Pathogen Interactions at an Early Stage[J]. Plant and Cell Physiology, 2004, 45(7):887-896.

    Google Scholar

    [66] SHENG B, HUANG X W, XIAO S, et al. Artificial Cervical Disk Replacement for the Treatment of Adjacent Segment Disease after Anterior Cervical Decompression and Fusion[J]. Clinical Spine Surgery:A Spine Publication, 2017, 30(5):E587-E591.

    Google Scholar

    [67] LETSOIN S M A, PURWESTRI R C, PERDANA M C, et al. Monitoring of Paddy and Maize Fields Using Sentinel-1 SAR Data and NGB Images:a Case Study in Papua, Indonesia[J]. Processes, 2023, 11(3):647.

    Google Scholar

    [68] ZHANG J C, HUANG Y B, PU R L, et al. Monitoring Plant Diseases and Pests through Remote Sensing Technology:aReview[J]. Computers and Electronics in Agriculture, 2019, 165:104943.

    Google Scholar

    [69] KHAN A, VIBHUTE A D, MALI S, et al. A Systematic Review on Hyperspectral Imaging Technology with a Machine and Deep Learning Methodology for Agricultural Applications[J]. Ecological Informatics, 2022, 69:101678.

    Google Scholar

    [70] LOLADZE A, RODRIGUES F A, TOLEDO F, et al. Application of Remote Sensing for Phenotyping Tar Spot Complex Resistance in Maize[J]. Frontiers in Plant Science, 2019, 10:552.

    Google Scholar

    [71] ZHU W J, CHEN H, CIECHANOWSKA I, et al. Application of Infrared Thermal Imaging for the Rapid Diagnosis of Crop Disease[J]. IFAC-PapersOnLine, 2018, 51(17):424-430.

    Google Scholar

    [72] ASHAPURE A, JUNG J, YEOM J, et al. A Novel Framework to Detect Conventional Tillage and No-Tillage Cropping System Effect on Cotton Growth and Development Using Multi-Temporal UAS Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152:49-64.

    Google Scholar

    [73] 姜玉英, 罗金燕, 罗德平, 等. 远程控制病菌孢子捕捉仪对小麦气传病害的监测效果[J]. 植物保护, 2015, 41(6):163-168.

    Google Scholar

    [74] RIEUX A, SOUBEYRAND S, BONNOT F, et al. Long-Distance Wind-Dispersal of Spores in a Fungal Plant Pathogen:Estimation of Anisotropic Dispersal Kernels from an Extensive Field Experiment[J]. PLoS One, 2014, 9(8):e103225.

    Google Scholar

    [75] 闫征远, 范洁茹, 刘伟, 等. 基于田间空气中病菌孢子浓度的小麦白粉病病情估计模型研究[J]. 植物病理学报, 2017, 47(2):253-261.

    Google Scholar

    [76] CAO X R, YAO D M, XU X M, et al. Development of Weather-and Airborne Inoculum-Based Models to Describe Disease Severity of Wheat Powdery Mildew[J]. Plant Disease, 2015, 99(3):395-400.

    Google Scholar

    [77] 龚国淑, 姚凯凯. 孢子捕捉仪在植物病害监测中的应用[J]. 植物保护学报, 2022, 49(3):721-730.

    Google Scholar

    [78] 王晓鸣, 刘骏, 郭云燕, 等. 中国玉米南方锈病初侵染源的多源性[J]. 玉米科学, 2020, 28(3):1-14, 30.

    Google Scholar

    [79] 刘章雄, 王守才. 玉米锈病研究进展[J]. 玉米科学, 2003, 11(4):76-79.

    Google Scholar

    [80] 董佳玉, 黄莉群, 马占鸿. 玉米南方锈病农业防治措施初探[C]//病虫防护与生物安全——中国植物保护学会2021年学术年会论文集. 北京:中国农业科学技术出版社, 2021.

    Google Scholar

    [81] 高建孟, 黄莉群, 董佳玉, 等. 品种混种对玉米南方锈病发病情况的影响[C]//中国植物病理学会2021年论文集. 北京:中国农业科学技术出版社, 2021.

    Google Scholar

    [82] 邹元元, 贺长兴, 周文娟. 玉米大豆复合种植技术的应用研究[J]. 中国粮油学报, 2019, (6):27-30.

    Google Scholar

    [83] 马晓丽, 吕慧, 郑洪江. 玉米大豆复合种植的优化模式与效益分析[J]. 中国种业, 2020, 37(4):29-31.

    Google Scholar

    [84] KUHLMAN E G. Efficacy of Darluca Filum for Biological Control of Cronartium fusiforme and C. strobilinum[J]. Phytopathology, 1978, 68(3):507.

    Google Scholar

    [85] PEI M H, HUNTER T, RUIZ C, et al. Quantitative Inoculation of Willow Rust Melampsora larici-epitea with the Mycoparasite sphaerellopsis Filum (Teleomorph Eudarluca caricis)[J]. Mycological Research, 2003, 107(1):57-63.

    Google Scholar

    [86] NISCHWITZ C, NEWCOMBE G, ANDERSON C L. Host Specialization of the Mycoparasite Eudarluca caricis and Its Evolutionary Relationship to Ampelomyces[J]. Mycological Research, 2005, 109(4):421-428.

    Google Scholar

    [87] ZAPATA P A G. Characterization of the natural enemies of rust fungi (Pucciniales)[D]. Purdue University Graduate School, 2022.

    Google Scholar

    [88] 孙志强, 董佳玉, 马占鸿. 一种玉米南方锈病生防真菌的开发研究[C]//中国植物病理学会2021年学术年会论文集. 北京:中国农业科学技术出版社, 2021.

    Google Scholar

    [89] 赵晨晨, 焦铸锦, 庞发虎, 等. 生防菌R-4的鉴定及其对玉米南方锈病的防效[J]. 玉米科学, 2017, 25(2):136-141.

    Google Scholar

    [90] HAMMOND P M, LAWRENCE J F. Mycophagy in Insects:ASummary[M]//Insect-fungus Interactions. Amsterdam:Elsevier, 1989:275-324.

    Google Scholar

    [91] BRUNS T D. Insect mycophagy in the Boletales:fungivore diversity and the mushroom habitat[J]. Fungus-Insect Relationships-Perspectives in Ecology and Evolution, 1984(1), 446-479.

    Google Scholar

    [92] HENK D A, FARR D F, AIME M C. Mycodiplosis (Diptera) Infestation of Rust Fungi is Frequent, Wide Spread and Possibly Host Specific[J]. Fungal Ecology, 2011, 4(4):284-289.

    Google Scholar

    [93] Revision in Mitteleuropa Vorkommender Mycophage Gallmücken der Mycodiplosis-Gruppe (Diptera, Cecidomyiidae) unter Berücksichtigung ihrer Wirtsspezifität[M]. Universität Stuttgart, 1970.

    Google Scholar

    [94] SILVA D D, MENDES S M, PARREIRA D F, et al. Fungivory:a New and Complex Ecological Function of Doru Luteipes (Scudder) (Dermaptera:Forficulidae)[J]. Brazilian Journal of Biology, 2022, 82:e238763-e238763..

    Google Scholar

    [95] ANAGNOSTAKIS S L. Biological Control of Chestnut Blight[J]. Science, 1982, 215(4532):466-471.

    Google Scholar

    [96] DARISSA O, ADAM G, SCHÄFER W. A dsRNA Mycovirus Causes Hypovirulence of Fusarium graminearum to Wheat and Maize[J]. European Journal of Plant Pathology, 2012, 134(1):181-189.

    Google Scholar

    [97] URAYAMA S, KATO S, SUZUKI Y, et al. Mycoviruses Related to Chrysovirus Affect Vegetative Growth in the Rice Blast Fungus Magnaporthe oryzae[J]. Journal of General Virology, 2010, 91(12):3085-3094.

    Google Scholar

    [98] LIU H, WANG H, LIAO X L, et al. Mycoviral Gene Integration Converts a Plant Pathogenic Fungus into a Biocontrol Agent[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(50):e2214096119.

    Google Scholar

    [99] ZHENG L, LU X A, LIANG X F, et al. Molecular Characterization of Novel Totivirus-Like Double-Stranded RNAs from Puccinia striiformis F. Sp. Tritici, the Causal Agent of Wheat Stripe Rust[J]. Frontiers in Microbiology, 2017, 8:1960.

    Google Scholar

    [100] ZHANG Y H, LIANG X F, ZHAO M X, et al. A Novel Ambigrammatic Mycovirus, PsV5, Works Hand in Glove with Wheat Stripe Rust Fungus to Facilitate Infection[J]. Plant Communications, 2023, 4(3):100505.

    Google Scholar

    [101] PRYOR A, BOELEN M G. A Double-Stranded RNA Mycovirus from the Maize Rust Puccinia sorghi[J]. Canadian Journal of Botany, 1987, 65(11):2380-2383.

    Google Scholar

    [102] AN C F, MOU Z L. Salicylic Acid and Its Function in Plant ImmunityF[J]. Journal of Integrative Plant Biology, 2011, 53(6):412-428.

    Google Scholar

    [103] WASTERNACK C, HAUSE B. Jasmonates:Biosynthesis, Perception, Signal Transduction and Action in Plant Stress Response, Growth and Development. anUpdate to the 2007 Review in Annals of Botany[J]. Annals of Botany, 2013, 111(6):1021-1058.

    Google Scholar

    [104] LIU S F, JIANG J C, MA Z H, et al. The Role of Hydroxycinnamic Acid Amide Pathway in Plant Immunity[J]. Frontiers in Plant Science, 2022, 13:922119.

    Google Scholar

    [105] YANG Y H, ZHAO J, LIU P, et al. Glycerol-3-Phosphate Metabolism in Wheat Contributes to Systemic Acquired Resistance Against Puccinia striiformis F. Sp. Tritici[J]. PLoS One, 2013, 8(11):e81756.

    Google Scholar

    [106] 马金慧, 杨克泽, 徐志鹏, 等. 不同植物免疫诱抗剂对玉米茎基腐病菌的抑制效果和田间防效[J]. 农药, 2022, 61(11):840-844.

    Google Scholar

    [107] SRIVASTAVA M P, GUPTA S, SHARMA Y K. Detection of Siderophore Production from Different Cultural Variables by CAS-Agar Plate Assay[J]. Asian Journal of Pharmacy and Pharmacology, 2018, 4(1):66-69.

    Google Scholar

    [108] DE PALMA M, SALZANO M, VILLANO C, et al. Transcriptome Reprogramming, Epigenetic Modifications and Alternative Splicing Orchestrate the Tomato Root Response to the Beneficial Fungus Trichoderma harzianum[J]. Horticulture Research, 2019, 6:5.

    Google Scholar

    [109] MALINICH E A, WANG K, MUKHERJEE P K, et al. Differential Expression Analysis of Trichoderma Virens RNA Reveals a Dynamic Transcriptome during Colonization of Zea mays Roots[J]. BMC Genomics, 2019, 20(1):1-19.

    Google Scholar

    [110] 张广志, 文成敬. 木霉对玉米纹枯病的生物防治[J]. 植物保护学报, 2005, 32(4):353-356.

    Google Scholar

    [111] LIMDOLTHAMAND S, SONGKUMARN P, SUWANNARAT S, et al. Biocontrol Efficacy of Endophytic Trichoderma SPP. in Fresh and Dry Powder Formulations in Controlling Northern Corn Leaf Blight in Sweet Corn[J]. Biological Control, 2023, 181:105217.

    Google Scholar

    [112] ESMAIL S M, OMAR G E, MOURAD A M I. In-Depth Understanding of the Genetic Control of Stripe Rust Resistance (Puccinia striiformis F. sp. tritici) Induced in Wheat (Triticum aestivum) by Trichoderma asperellum T34[J]. Plant Disease, 2023, 107(2):457-472.

    Google Scholar

    [113] AMARA A A, SALEM-BEKHIT M M, ALANAZI F K. Sponge-Like:a New Protocol for Preparing Bacterial Ghosts[J]. The Scientific World Journal, 2013, 2013:545741.

    Google Scholar

    [114] AMARA A A, SALEM-BEKH M M, ALANAZI F K. Preparation of Bacterial Ghosts for E. Coli JM109 Using "Sponge-Like Reduced Protocol"[J]. Asian Journal of Biological Sciences, 2013, 6(8):363-369.

    Google Scholar

    [115] SHEWEITA S A, BATAH A M, GHAZY A A, et al. A New Strain of Acinetobacter baumannii and Characterization of Its Ghost as a Candidate Vaccine[J]. Journal of Infection and Public Health, 2019, 12(6):831-842.

    Google Scholar

    [116] EL-BAKY N, SHARAF M M, AMER E, et al. Protein and DNA Isolation from Aspergillus niger as Well as Ghost Cells Formation[J]. SOJ Biochemistry, 2018, 4(1):1-7.

    Google Scholar

    [117] EL-BAKY N, SHARAF M M, AMER E,et al. The Minimum Inhibition and Growth Concentrations for Controlling Fungal Infections as Well as Ghost Cells Preparation:Aspergillus Flavus as a Model[J]. Biomedical Journal of Scientific & Technical Research, 2018, 10(2):1-5.

    Google Scholar

    [118] EL-BAKY N A, ABDEL RAHMAN R A, SHARAF M M, et al. The Development of a Phytopathogenic Fungi Control Trial:Aspergillus flavus and Aspergillus niger Infection in Jojoba Tissue Culture as a Model[J]. The Scientific World Journal, 2021, 2021:1-8.

    Google Scholar

    [119] VINITHAS, SWEETLIN S, VINUSHAH, etal. Disease Prediction Using Machine Learning over Big Data[J]. SSRN Electronic Journal, 2017, 17(1):26-34.

    Google Scholar

    [120] JAIN R, MINZ S, RAMASUBRAMANIAN V. Machine Learning for Forewarning Crop Diseases[J]. Journal of the Indian Society of Agricultural Statistics, 2009, 63(1):97-107.

    Google Scholar

    [121] 谭文学. 基于机器学习的作物病害图像处理及病变识别方法研究[D]. 北京:北京工业大学, 2016.

    Google Scholar

    [122] 许世卫, 王东杰, 李哲敏. 大数据推动农业现代化应用研究[J]. 中国农业科学, 2015, 48(17):3429-3438.

    Google Scholar

    [123] 濮永仙. 计算机视觉在作物病害诊断中的研究进展[J]. 智能计算机与应用, 2015, 5(2):68-72.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(378) PDF downloads(151) Cited by(0)

Access History

Study on the Epidemic Status of Southern Corn Rust and Green Prevention and Control Strategies

Abstract: Southern corn rust (SCR) is a fungal disease that significantly impacts corn production in China. In recent years, green prevention and control based on the entire farmland ecosystem has emerged as a promising agricultural pest management method. Currently, a series of green prevention and control technologies for SCR have been used, but they are fragmented and lack a systematic approach. This paper aims to systematically understand the current research status and future trends in the field of green prevention and control of SCR. To achieve this purpose, in this paper, the occurrence situation of southern corn rust disease in China was introduced, and the green prevention and control measures of southern corn rust disease were systematically expounded, including monitoring and early warning, disease-resistance germplasm and genes, ecological regulation, and biological control methods. Additionally, this paper outlines potential green prevention and control methods for SCR and clarifies the application prospect of green prevention and control technology, in order to provide reference information for the establishment of a green prevention and control system for SCR.

Reference (123)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return