[1]
|
GANGURDE S S, XAVIER A, NAIK Y D, et al. Two Decades of Association Mapping:Insights on Disease Resistance in Major Crops[J]. Frontiers in Plant Science, 2022, 13:1064059.
Google Scholar
|
[2]
|
GHORMADE V, DESHPANDE M V, PAKNIKAR K M. Perspectives for Nano-Biotechnology Enabled Protection and Nutrition of Plants[J]. Biotechnology Advances, 2011, 29(6):792-803.
Google Scholar
|
[3]
|
刘益良, 苏幼坡, 殷尧, 等. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5):5040-5052.
Google Scholar
|
[4]
|
KURZBAUM E, BAR SHALOM O. The Potential of Phosphate Removal from Dairy Wastewater and Municipal Wastewater Effluents Using a Lanthanum-Modified Bentonite[J]. Applied Clay Science, 2016, 123:182-186.
Google Scholar
|
[5]
|
DAI G Z, SHENG Y M, PAN Y T, et al. Application of a Bentonite Slurry Modified by Polyvinyl Alcohol in the Cutoff of a Landfill[J]. Advances in Civil Engineering, 2020, 2020:1-9.
Google Scholar
|
[6]
|
DA SILVA D L M, BOSCOV M E G, DE ALMEIDA COSTA M, et al. Adsorption of Heavy Metals on Bentonitic Soil for Use in Landfill Liners[J]. Adsorption Science & Technology, 2023, 2023:1-12.
Google Scholar
|
[7]
|
柴宽, 何海杰, 赵俭斌, 等. 改性膨润土处理污染物的研究[J]. 中国资源综合利用, 2021, 39(9):39-41.
Google Scholar
|
[8]
|
DUMAN O, TUNÇS. Electrokinetic and Rheological Properties of Na-Bentonite in some Electrolyte Solutions[J]. Microporous and Mesoporous Materials, 2009, 117(1-2):331-338.
Google Scholar
|
[9]
|
SHAIKH S M R, NASSER M S, HUSSEIN I A, et al. Investigation of the Effect of Polyelectrolyte Structure and Type on the Electrokinetics and Flocculation Behavior of Bentonite Dispersions[J]. Chemical Engineering Journal, 2017, 311:265-276.
Google Scholar
|
[10]
|
ZHU T T, ZHOU C H, KABWE F B, et al. Exfoliation of Montmorillonite and Related Properties of Clay/Polymer Nanocomposites[J]. Applied Clay Science, 2019, 169:48-66.
Google Scholar
|
[11]
|
DU S Y, PENG T F, SONG S Y, et al. Effect of Calcium Ions on Bentonite Network Structure[J]. Minerals Engineering, 2022, 186:107724.
Google Scholar
|
[12]
|
ZHU Y Y, CUI Y M, PENG Y M, et al. Preparation of CTAB Intercalated Bentonite for Ultrafast Adsorption of Anionic Dyes and Mechanism Study[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 658:130705.
Google Scholar
|
[13]
|
ZHANG Y, XU P, XU M B, et al. Properties of Bentonite Slurry Drilling Fluid in Shallow Formations of Deepwater Wells and the Optimization of Its Wellbore Strengthening Ability while Drilling[J]. ACS Omega, 2022, 7(44):39860-39874.
Google Scholar
|
[14]
|
SAJID M. Bentonite-Modified Electrochemical Sensors:a Brief Overview of Features and Applications[J]. Ionics, 2018, 24(1):19-32.
Google Scholar
|
[15]
|
MUSLIM W A, ALBAYATI T M, AL-NASRI S K. Decontamination of Actual Radioactive Wastewater Containing 137Cs Using Bentonite as a Natural Adsorbent:Equilibrium, Kinetics, and Thermodynamic Studies[J]. Scientific Reports, 2022, 12:13837.
Google Scholar
|
[16]
|
HE H J, CHAI K A, WU T, et al. Adsorption of Rhodamine B from Simulated Waste Water Onto Kaolin-Bentonite Composites[J]. Materials, 2022, 15(12):4058.
Google Scholar
|
[17]
|
YOUS R, KHALLADI R, CHERIFI H. Simultaneous Sorption of Heavy Metals on Algerian Bentonite:Mechanism Study[J]. Water Science and Technology, 2021, 84(12):3676-3688.
Google Scholar
|
[18]
|
YILDIZ N, AKTAS Z, CALIMLI A. Sulphuric Acid Activation of a Calcium Bentonite[J]. Particulate Science and Technology, 2004, 22(1):21-33.
Google Scholar
|
[19]
|
ALVER B E, ALVER Ö, GVNAL A, et al. Effects of Hydrochloric Acid Treatment on Structure Characteristics and C2H4 Adsorption Capacities of Vnye Bentonite from Turkey:a Combined FT-IR, XRD, XRF, TG/DTA and MAS NMR Study[J]. Adsorption, 2016, 22(3):287-296.
Google Scholar
|
[20]
|
KRUPSKAYA V, ZAKUSIN S, TYUPINA E, et al. Experimental Study of Montmorillonite Structure and Transformation of Its Properties under Treatment with Inorganic Acid Solutions[J]. Minerals, 2017, 7(4):49.
Google Scholar
|
[21]
|
WANG W L, WANG X X, SONG C S, et al. Sulfuric Acid Modified Bentonite as the Support of Tetraethylenepentamine for CO2 Capture[J]. Energy & Fuels, 2013, 27(3):1538-1546.
Google Scholar
|
[22]
|
PATEL H A, SOMANI R S, BAJAJ H C, et al. Synthesis of Organoclays with Controlled Particle Size and Whiteness from Chemically Treated Indian Bentonite[J]. Industrial & Engineering Chemistry Research, 2010, 49(4):1677-1683.
Google Scholar
|
[23]
|
IZOSIMOVA Y, TOLPESHTA I, GUROVA I, et al. Sorption of Cu2+ Ions by Bentonite Modified with Al Keggin Cations and Humic Acid in Solutions with pH 4.5[J]. Minerals, 2020, 10(12):1121.
Google Scholar
|
[24]
|
ACHOUR S, AMOKRANE S, CHEGROUCHE S, et al. Artificial Neural Network Modeling of the Hexavalent Uranium Sorption Onto Chemically Activated Bentonite[J]. Research on Chemical Intermediates, 2021, 47(11):4837-4854.
Google Scholar
|
[25]
|
TSAKIRI D, DOUNI I, TAXIARCHOU M. Structural and Surface Modification of Oxalic-Acid-Activated Bentonites in Various Acid Concentrations for Bleaching Earth Synthesis-A Comparative Study[J]. Minerals, 2022, 12(6):764.
Google Scholar
|
[26]
|
ANGKAWIJAYA A E, SANTOSO S P, BUNDJAJA V, et al. Studies on the Performance of Bentonite and Its Composite as Phosphate Adsorbent and Phosphate Supplementation for Plant[J]. Journal of Hazardous Materials, 2020, 399:123130.
Google Scholar
|
[27]
|
ZHANG H B, ZHOU J A, MUHAMMAD Y, et al. Citric Acid Modified Bentonite for Congo Red Adsorption[J]. Frontiers in Materials, 2019, 6:5.
Google Scholar
|
[28]
|
SHEN Y W, JIAO S Y, MA Z, et al. Humic Acid-Modified Bentonite Composite Material Enhances Urea-Nitrogen Use Efficiency[J]. Chemosphere, 2020, 255:126976.
Google Scholar
|
[29]
|
王抚抚, 陈泉水, 罗太安, 等. 膨润土的改性研究进展[J]. 应用化工, 2017, 46(4):775-779.
Google Scholar
|
[30]
|
HUANG Z H, LI Y Z, CHEN W J, et al. Modified Bentonite Adsorption of Organic Pollutants of Dye Wastewater[J]. Materials Chemistry and Physics, 2017, 202:266-276.
Google Scholar
|
[31]
|
KADIR N N A, SHAHADAT M, ISMAIL S. Formulation Study for Softening of Hard Water Using Surfactant Modified Bentonite Adsorbent Coating[J]. Applied Clay Science, 2017, 137:168-175.
Google Scholar
|
[32]
|
MARTINEZ-COSTA J I, LEYVA-RAMOS R. Effect of Surfactant Loading and Type Upon the Sorption Capacity of Organobentonite towards Pyrogallol[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 520:676-685.
Google Scholar
|
[33]
|
SU J, HUANG H G, JIN X Y, et al. Synthesis, Characterization and Kinetic of a Surfactant-Modified Bentonite Used to Remove As(III) and As(V) from Aqueous Solution[J]. Journal of Hazardous Materials, 2011, 185(1):63-70.
Google Scholar
|
[34]
|
OBRADOVIC' M, DAKOVIC' A, SMILJANI? D, et al. Ibuprofen and diclofenac sodium adsorption onto functionalized minerals:Equilibrium, kinetic and thermodynamic studies[J]. Microporous and Mesoporous Materials, 2022, 335:111795.
Google Scholar
|
[35]
|
HE H J, XU E P, QIU Z H, et al. Phenol Adsorption Mechanism of Organically Modified Bentonite and Its Microstructural Changes[J]. Sustainability, 2022, 14(3):1318.
Google Scholar
|
[36]
|
MA J F, CUI B Y, DAI J, et al. Mechanism of Adsorption of Anionic Dye from Aqueous Solutions Onto Organobentonite[J]. Journal of Hazardous Materials, 2011, 186(2-3):1758-1765.
Google Scholar
|
[37]
|
YU K, XU J, JIANG X H, et al. Stabilization of Heavy Metals in Soil Using Two Organo-Bentonites[J]. Chemosphere, 2017, 184:884-891.
Google Scholar
|
[38]
|
DE MORAIS PINOS J Y, DE MELO L B, DE SOUZA S D, et al. Bentonite Functionalized with Amine Groups by the Sol-Gel Route as Efficient Adsorbent of Rhodamine-B and Nickel (II)[J]. Applied Clay Science, 2022, 223:106494.
Google Scholar
|
[39]
|
MUCHA M, PAVLOVSKY' J, NAVRÁTILOVÁ Z. Organic Vapours Sorption on Simply Modified Bentonites[J]. Chemical Papers, 2017, 71(1):3-12.
Google Scholar
|
[40]
|
MEN X P, GUO Q X, MENG B, et al. Adsorption of Bisphenol a in Aqueous Solution by Composite Bentonite with Organic Moity[J]. Microporous and Mesoporous Materials, 2020, 308:110450.
Google Scholar
|
[41]
|
AHMED D N, IBRAHIM M O, ABDUL-KAREEM M B, et al. Novel Low-Cost Composite Sorbent for Remediating Synthetic Sanitary Landfill Leachates:Batch and Column Study[J]. Alexandria Engineering Journal, 2023, 64:205-218.
Google Scholar
|
[42]
|
王泽龙, 李顺义, 吴朕君. 膨润土改性和复配及在废水处理中的应用进展[J]. 工业水处理, 2022, 42(2):11-18.
Google Scholar
|
[43]
|
ZHANG Q, SHI L, MENG X. Deep Adsorption Desulfurization of Liquid Petroleum Gas by Copper-Modified Bentonite[J]. RSC Advances, 2016, 6(12):9589-9597.
Google Scholar
|
[44]
|
YANG D L, CHENG F P, CHANG L, et al. Sodium Modification of Low Quality Natural Bentonite as Enhanced Lead Ion Adsorbent[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 651:129753.
Google Scholar
|
[45]
|
AN M, YUAN N N, GUO Q J, et al. Role of CuFe2O4 in Elemental Mercury Adsorption and Oxidation on Modified Bentonite for Coal Gasification[J]. Fuel, 2022, 328:125231.
Google Scholar
|
[46]
|
PAJARITO B B, CASTA?EDA K C, JERESANO S D M, et al. Reduction of Offensive Odor from Natural Rubber Using Zinc-Modified Bentonite[J]. Advances in Materials Science and Engineering, 2018, 2018:1-8.
Google Scholar
|
[47]
|
DIANA-CARMEN M, DUMITRA R, ANA-MARIA G, et al. Silver Nanoparticles Incorporated on Natural Clay as an Inhibitor Against the New ISO SS Bacteria Isolated from Sewage Sludge, Involved in Malachite Green Dye Oxidation[J]. Molecules, 2022, 27(18):5791.
Google Scholar
|
[48]
|
KONG X P, ZHANG B H, WANG J. Multiple Roles of Mesoporous Silica in Safe Pesticide Application by Nanotechnology:a Review[J]. Journal of Agricultural and Food Chemistry, 2021, 69(24):6735-6754.
Google Scholar
|
[49]
|
ZHAO X, CUI H X, WANG Y, et al. Development Strategies and Prospects of Nano-Based Smart Pesticide Formulation[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26):6504-6512.
Google Scholar
|
[50]
|
RANI L, THAPA K, KANOJIA N, et al. An Extensive Review on the Consequences of Chemical Pesticides on Human Health and Environment[J]. Journal of Cleaner Production, 2021, 283:124657.
Google Scholar
|
[51]
|
PAN X H, GUO X P, ZHAI T Y, et al. Nanobiopesticides in Sustainable Agriculture:Developments, Challenges, and Perspectives[J]. Environmental Science:Nano, 2023, 10(1):41-61.
Google Scholar
|
[52]
|
SINGH G, RAMADASS K, SOORIYAKUMAR P, et al. Nanoporous Materials for Pesticide Formulation and Delivery in the Agricultural Sector[J]. Journal of Controlled Release, 2022, 343:187-206.
Google Scholar
|
[53]
|
FLEMMING H C, WINGENDER J, SZEWZYK U, et al. Biofilms:an Emergent Form of Bacterial Life[J]. Nature Reviews Microbiology, 2016, 14(9):563-575.
Google Scholar
|
[54]
|
BEJARANO A, SAUER U, MITTER B, et al. Parameters Influencing Adsorption of Paraburkholderia Phytofirmans PsJN Onto Bentonite, Silica and Talc for Microbial Inoculants[J]. Applied Clay Science, 2017, 141:138-145.
Google Scholar
|
[55]
|
LI T, HE Y H, AN X F, et al. Elucidating Adhesion Behaviors and the Interfacial Interaction Mechanism between Plant Probiotics and Modified Bentonite Carriers[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(24):8125-8135.
Google Scholar
|
[56]
|
SARKAR D J, SINGH A. Base Triggered Release of Insecticide from Bentonite Reinforced Citric Acid Crosslinked Carboxymethyl Cellulose Hydrogel Composites[J]. Carbohydrate Polymers, 2017, 156:303-311.
Google Scholar
|
[57]
|
JAIN S K, DUTTA A, KUMAR J, et al. Preparation and Characterization of Dicarboxylic Acid Modified Starch-Clay Composites as Carriers for Pesticide Delivery[J]. Arabian Journal of Chemistry, 2020, 13(11):7990-8002.
Google Scholar
|
[58]
|
TENG G P, CHEN C W, JING N N, et al. Halloysite Nanotubes-Based Composite Material with Acid/Alkali Dual pH Response and Foliar Adhesion for Smart Delivery of Hydrophobic Pesticide[J]. Chemical Engineering Journal, 2023, 451:139052.
Google Scholar
|
[59]
|
LV X, YUAN M T, PEI Y H, et al. The Enhancement of Antiviral Activity of Chloroinconazide by Aglinate-Based Nanogel and Its Plant Growth Promotion Effect[J]. Journal of Agricultural and Food Chemistry, 2021, 69(17):4992-5002.
Google Scholar
|
[60]
|
FAN C R, LIU Y, DANG M F, et al. Polysaccharides Synergistic Boosting Drug Loading for Reduction Pesticide Dosage and Improve Its Efficiency[J]. Carbohydrate Polymers, 2022, 297:120041.
Google Scholar
|
[61]
|
ZHANG H Y, SHI Y S, XU X F, et al. Structure Regulation of Bentonite-Alginate Nanocomposites for Controlled Release of Imidacloprid[J]. ACS Omega, 2020, 5(17):10068-10076.
Google Scholar
|
[62]
|
HUANG A M, HUANG Z L, DONG Y, et al. Controlled Release of Phoxim from Organobentonite Based Formulation[J]. Applied Clay Science, 2013, 80-81:63-68.
Google Scholar
|
[63]
|
RASAIE A, SABZEHMEIDANI M M, GHAEDI M, et al. Removal of Herbicide Paraquat from Aqueous Solutions by Bentonite Modified with Mesoporous Silica[J]. Materials Chemistry and Physics, 2021, 262:124296.
Google Scholar
|
[64]
|
WU C, LOU X F, XU X F, et al. Thermodynamics and Kinetics of Pretilachlor Adsorption on Organobentonites for Controlled Release[J]. ACS Omega, 2020, 5(8):4191-4199.
Google Scholar
|
[65]
|
WU C, LOU X F, HUANG A M, et al. Thermodynamics and Kinetics of Pretilachlor Adsorption:Implication to Controlled Release from Organobentonites[J]. Applied Clay Science, 2020, 190:105566.
Google Scholar
|
[66]
|
BAKHTIARY S, SHIRVANI M, SHARIATMADARI H. Adsorption-Desorption Behavior of 2, 4-D on NCP-Modified Bentonite and Zeolite:Implications for Slow-Release Herbicide Formulations[J]. Chemosphere, 2013, 90(2):699-705.
Google Scholar
|
[67]
|
THAKUR S, VERMA A, RAIZADA P, et al. Bentonite-Based Sodium Alginate/Dextrin Cross-Linked Poly(acrylic acid) Hydrogel Nanohybrids for Facile Removal of Paraquat Herbicide from Aqueous Solutions[J]. Chemosphere, 2022, 291:133002.
Google Scholar
|
[68]
|
李花. 甲草胺和乙草胺缓释剂的制备及吸附和释放性能研究[D]. 南宁:广西大学.
Google Scholar
|
[69]
|
SINGH B, SHARMA D K, KUMAR R, et al. Controlled Release of the Fungicide Thiram from Starch-Alginate-Clay Based Formulation[J]. Applied Clay Science, 2009, 45(1-2):76-82.
Google Scholar
|
[70]
|
刘彦辉, 侯莲霞, 田金玲, 等. 恶霉灵-木质素两性表面活性剂改性膨润土缓释剂的制备及性能[J]. 北京林业大学学报, 2015, 37(9):101-107.
Google Scholar
|
[71]
|
孔令娥, 张嘉坤, 江华, 等. 有机膨润土对农药水乳剂稳定性的协同作用及其机制[J]. 农药学学报, 2012, 14(1):83-88.
Google Scholar
|
[72]
|
张源, 李杨, 陈波, 等. 有机改性膨润土对己唑醇水悬浮体系物理稳定性的影响[J]. 应用化学, 2011, 28(5):565-570.
Google Scholar
|
[73]
|
曾清如, 周细红, 杨仁斌, 等. CTMAB-膨润土对水溶液中4种农药的吸附特性[J]. 农药学学报, 2000, 2(3):80-84.
Google Scholar
|