-
过氧化物酶(EC 1.11.1.7)是一类以铁卟啉为辅基的氧化还原酶,该酶参与了植物的光合作用、呼吸作用、乙烯和木质素生物合成[1],对细胞的生长发育、细胞膜完整性、自身损伤修复、疾病抵抗、逆境胁迫抵抗都起到了积极的作用,同时能催化大量酚类化合物以解除细胞毒性[2].目前,该酶在环境治理、免疫学、医学、食品产业等领域得到广泛应用[3-5].
‘忠薯1’(Ipomoea batatas L. Lam)又名甘薯,为1年生旋花科植物.甘薯富含多种营养物质,如淀粉[6]、蛋白质、膳食纤维[7]、维生素[8]、酚类[9]、黄酮[10]、花青素[11]等.甘薯具有提高免疫力、抗氧化、抗动脉硬化和抗肿瘤等生理功能[12-14].随着人们生活水平的提高以及消费者对新鲜食材营养价值的日趋重视,近年来,鲜切甘薯因其营养丰富、便捷以及高利用率等特点迅速获得了广大消费者的青睐[15].但是鲜切甘薯在生产过程中容易受到机械力伤害,在氧气作用下,过氧化物酶与酚类化合物迅速接触生成醌类物质,醌类物质通过脱水以及自身聚合反应生成棕色或黑色聚合物形成甘薯褐变.褐变不仅会影响甘薯的外观,降低营养价值,还能导致甘薯变质腐烂和浪费,从而制约着甘薯产业的发展.因此,本实验以西南大学重庆市甘薯工程技术研究中心培育品种‘忠薯1’为实验材料,通过色谱技术成功从甘薯薯皮中分离纯化得到‘忠薯1’过氧化物酶,并对相关酶学特性以及酶促动力学进行探讨,为进一步揭示过氧化物酶酶促褐变分子机理、设计出有效控制鲜切甘薯褐变方法以及筛选出高效褐变抑制剂提供针对性的理论参考,也为甘薯产业的长远发展提供新的方向.
Separation and Purification of Peroxidase (POD) from the Skin of Sweet Potato cv. 'Zhongshu 1' and Study of Its Properties
-
摘要: 经表皮组织匀浆抽提,无水乙醇分级沉淀,DEAE-Sepharose离子交换层析,Superdex-200凝胶过滤层析,获得电泳纯度的过氧化物酶.该酶比活力、纯化倍数及回收率分别为571 975.93 U/mg,51.72,33.80%.该酶总分子量约为37.2 kDa,且为单聚体.该酶最适温度,pH值分别为65 ℃,6.2,具有耐酸耐热特性. ‘忠薯1’过氧化物酶Km值为52.833 mmol/L,且属于乒乓反应. Mg2+,Cu2+,Co2+,Fe3+对该酶有较强激活作用;Pb2+是甘薯过氧化物酶的有效抑制剂.Abstract: Peroxidase (POD) with electrophoretic purity from sweet potato cv. 'Zhongshu1' was obtained by homogenization, ethanol precipitation, DEAE-Sepharose ion exchange chromatograpy and Superdex-200 gel filtration chromatography. Its specific activity, purification fold and activity recovery were 571 975.93 U/mg, 51.72 and 33.80%, respectively. It had a molecular mass of 37.2 kDa and was a monomer by electrophoresis. Its optimum temperature and pH were 65 ℃ and 6.2, respectively, indicating its good tolerance to acidic and high temperature environments. The Km value of the peroxidase was 52.833 mmol/L, which belonged to ping pong reaction. Mg2+, Cu2+, Co2+ and Fe3+ exerted strong positive effects to the enzyme, but Pb2+ could effectively inhibit its activity.
-
Key words:
- sweet potato /
- peroxidase /
- purification and isolation /
- property .
-
表 1 ‘忠薯1’分离纯化结果
纯化步骤 总蛋白/mg 总酶活/U 比活力/(U·mg-1) 回收率/% 纯化倍数 粗酶液 20.35 225 020.0 11 057.49 100.00 1.00 乙醇沉淀 3.50 205 500.0 58 714.28 91.32 5.82 DEAE-Sepharose层析 0.36 95 060.0 259 726.77 42.24 23.48 Superdex-200层析 0.13 76 072.8 571 975.93 33.80 51.72 -
[1] SILVA E D A, LOURENCO E J, NEVES V A. Soluble and Bound Peroxidases from Papaya Fruit [J]. Phytochemistry, 1990, 29(4): 1051-1056. doi: 10.1016/0031-9422(90)85401-Z [2] ONSA G H, BIN SAARI N, SELAMAT J, et al. Purification and Characterization of Membrane-bound Peroxidases from Metroxylon Sagu [J]. Food Chemistry, 2004, 85(3): 365-376. doi: 10.1016/j.foodchem.2003.07.013 [3] RUZGAS T, EMNÉUS J, GORTON L, et al. The Development of a Peroxidase Biosensor for Monitoring Phenol and Related Aromatic Compounds [J]. Analytica Chimica Acta, 1995, 311(3): 245-253. doi: 10.1016/0003-2670(95)00047-4 [4] 陈笛, 王存芳.乳过氧化物酶的特性及其在羊乳产业中的应用乳业科学与技术[J].乳业科学与技术, 2018, 41(2): 42-46. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rykxyjs201802008 [5] 张丽华.辣根过氧化物酶在酚类废水中的应用[J].山西大同大学学报(自然科学版), 2012, 28(3): 35-39. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxdtdxxb201203012 [6] 王佳佳, 杨春贤, 曾令江, 等.高淀粉甘薯新品种"渝薯1号"的选育研究[J].西南大学学报(自然科学版), 2019, 41(7): 30-35. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.07.005 [7] YOSHIMOTO M, YAMAKAWA O, TANOUE H. Potential Chemopreventive Properties and Varietal Difference of Dietary Fiber from Sweet Potato (Ipomoea batatas L.) Root [J]. Japan Agricultural Research Quarterly, 2005, 39(1): 37-43. doi: 10.6090/jarq.39.37 [8] LOW J, JAARSVELD P V. The Potential Contribution of Bread Buns Fortified with β-Carotene-Rich Sweet Potato in Central Mozambique [J]. Food and Nutrition Bulletin, 2008, 29(2): 98-107. doi: 10.1177/156482650802900203 [9] TEOW C C, TRUONG V D, MCFEETERS R F, et al. Antioxidant Activities, Phenolic and β-Carotene Contents of Sweet Potato Genotypes with Varying Flesh Colours [J]. Food Chemistry, 2007, 103(3): 829-838. doi: 10.1016/j.foodchem.2006.09.033 [10] LALUSIN A G, OHTA M, FUJIMURA T. Temporal and Spatial Expression of Genes Involved in Anthocyanin Biosynthesis During Sweet Potato (Ipomoea batatas L. Lam.) Root Development [J]. International Journal of Plant Sciences, 2006, 167(2): 249-256. doi: 10.1086/499541 [11] CASALS B V A, ZEVALLOS L C. Stability of AnthocyaninBased Aqueous Extracts of Andean Purple corn and Red-Fleshed Sweet Potato Compared to Synthetic and Natural Colorants [J]. Food Chemistry, 2004, 86(1): 69-77. doi: 10.1016/j.foodchem.2003.08.011 [12] KUMAR S, MOLINA-CRUZ A, GUPTA L, et al. A Peroxidase/Dual Oxidase System Modulates Midgut Epithelial Immunity in Anopheles Gambiae [J]. Science, 2010, 327(5973): 1644-1648. doi: 10.1126/science.1184008 [13] PARK K H, KIM J R, LEE J S, et al. Ethanol and Water Extract of Purple Sweet Potato Exhibits Anti-Atherosclerotic Activity and Inhibits Protein Glycation [J]. Journal of Medicinal Food, 2010, 13(1): 91-98. doi: 10.1089/jmf.2009.1077 [14] doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004024728 SUGATA M, LIN C Y, SHIH Y C. Anti-Inflammatory and Anticancer Activities of Taiwanese Purple-Fleshed Sweet Potatoes (Ipomoea batatas L. Lam) Extracts [J]. Biomed Research International, 2015(7): 1-10. [15] 王礼群, 刘硕, 杨春贤, 等.鲜切甘薯不同部位褐变机理差异[J].食品科学, 2018, 39(1): 285-290. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spkx201801043 [16] 庞学群, 段学武, 张昭其, 等.荔枝果皮过氧化物酶的纯化及部分酶学性质研究[J].热带亚热带植物学报, 2004, 12(5): 449-454. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdyrdzwxb200405011 [17] 陶敏, 杨浩, 白亚娟, 等. β-淀粉酶的分离纯化及酶学性质研究[J].西南大学学报(自然科学版), 2018, 40(6): 1-8. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2018.06.001 [18] 罗磊, 董金龙, 朱文学, 等.金银花过氧化物酶的三相分离纯化及酶学性质[J].食品科学, 2017, 38(24): 20-27. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spkx201724004 [19] 邓波, 邓放明.藕带过氧化物酶的分离纯化及酶学性质[J].食品与机械, 2016, 32(2): 20-23. doi: http://www.cnki.com.cn/Article/CJFDTotal-SPJX201602007.htm [20] 刘力.大豆过氧化物酶的提取与分离纯化研究[J].绿色科技, 2018(16): 256-258, 262. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lsdsj201816098 [21] 黄国文.羊蹄叶过氧化物酶的纯化和酶学性质研究[J].天然产物研究与开发, 2015, 27(10): 1777-1782. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trcwyjykf201510017 [22] 张朝, 李永生, 高秀峰.沙田柚皮过氧化物酶的纯化及酶学性质的研究[J].食品工业科技, 2013, 34(12): 187-191. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spgykj201312045 [23] 敬海明, 邓玉, 成丽丽, 等.韭菜过氧化物酶的分离纯化及性质[J].食品科学, 2012, 33(15): 226-230. doi: http://www.cqvip.com/QK/95574X/201215/43122154.html [24] 付伟丽, 唐靓婷, 王松, 等.甘薯叶过氧化物酶的分离纯化及其部分性质研究[J].食品科学, 2010, 31(7): 223-227. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spkx201007049 [25] MÁRQUEZ O, WALISZEWSKI K N, OLIART R M, et al. Purification and Characterization of Cell Wall-bound Peroxidase from Vanilla Bean [J]. LWT - Food Science and Technology, 2008, 41(8): 1372-1379. doi: 10.1016/j.lwt.2007.08.017 [26] KVARATSKHELIA M, WINKEL C, THORNELEY R. Purification and Characterization of a Novel Class Ⅲ Peroxidase Isoenzyme from Tea Leaves [J]. Plant Physiology, 1997, 114(4): 1237-1245. doi: 10.1104/pp.114.4.1237 [27] DEEPA S S, ARUMUGHAN C. Purification and Characterization of Soluble Peroxidase from Oil Palm (Elaeis Guineensis Jacq.) Leaf [J]. Phytochemistry, 2002, 61(5): 503-511. doi: 10.1016/S0031-9422(02)00167-X [28] 李海燕, 靳艳, 张卫, 等.龙须菜中溴过氧化物酶的分离纯化及酶学性质分析[J].生物工程学报, 2008, 24(4): 622-626. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swgcxb200804016 [29] 杨晓月, 李小平, 李晨.藜麦麸过氧化物酶分离纯化及酶学特性研究[J].山西农业科学, 2019, 47(6): 977-981, 997. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shanxnykx201906013 [30] 林建城, 吴智雄, 彭在勤.枇杷果肉过氧化物酶的分离纯化及其性质研究[J].四川农业大学学报, 2007, 25(4): 419-424. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scnydxxb200704011 [31] 胡瑞斌, 李星, 王红杨, 等.黄瓜过氧化物酶的分离纯化及酶学性质[J].食品科学, 2014, 35(11): 168-173. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spkx201411034 [32] 阙瑞琦, 张丽丽, 郭小路, 等.莲藕过氧化物酶的分离纯化及性质研究[J].西南大学学报(自然科学版), 2007, 29(12): 63-67. doi: http://xbgjxt.swu.edu.cn/article/id/jsunsxnnydxxb200712014 [33] 王霞, 吴霞, 马亮, 等.棉花幼苗受铅、镉胁迫的抗氧化酶反应[J].江苏农业科学, 2012, 40(12): 105-107. doi: http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsnykx201212037 [34] CUADRADO N H, ARELLANO J B, CALVETE J J, et al. Substrate Specificity of the Chamaerops Excelsa Palm Tree Peroxidase. a Steady-state Kinetic Study [J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 74(1-2): 103-108. doi: 10.1016/j.molcatb.2011.09.005 [35] HOLLENBERG P F. Mechanisms of Cytochrome P450 and Peroxidase-Catalyzed Xenobiotic Metabolism [J]. The FASEB Journal, 1992, 6(2): 686-694. doi: 10.1096/fasebj.6.2.1537457 [36] GALENDE P P, CUADRADO N H, KOSTETSKY E, et al. Kinetics of Spanish Broom Peroxidase Obeys a Ping-Pong Bi-Bi Mechanism with Competitive Inhibition by Substrates [J]. International Journal of Biological Macromolecules, 2015, 81: 1005-1011. doi: 10.1016/j.ijbiomac.2015.09.042