Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2018 Volume 40 Issue 10
Article Contents

Ya-qi WANG, Zeng-qi OU. Multiplicity of Solutions for Kirchhoff Equation with Concave and Convex Nonlinearities[J]. Journal of Southwest University Natural Science Edition, 2018, 40(10): 89-94. doi: 10.13718/j.cnki.xdzk.2018.10.015
Citation: Ya-qi WANG, Zeng-qi OU. Multiplicity of Solutions for Kirchhoff Equation with Concave and Convex Nonlinearities[J]. Journal of Southwest University Natural Science Edition, 2018, 40(10): 89-94. doi: 10.13718/j.cnki.xdzk.2018.10.015

Multiplicity of Solutions for Kirchhoff Equation with Concave and Convex Nonlinearities

More Information
  • Corresponding author: Zeng-qi OU
  • Received Date: 01/11/2017
    Available Online: 20/10/2018
  • MSC: O176.3

  • In this paper, we study a class of Kirchhoff equation $ \left\{ \begin{array}{l} - \left( {a + b\int_\mathit{\Omega} {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u = {\left| u \right|^4}u + \mu {\left| u \right|^{q - 2}}u\;\;\;\;\;\;\;x \in \mathit{\Omega} \\ u = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega} \end{array} \right. $ with concave and convex nonlinearities, where \lt i \gt Ω \lt /i \gt ⊂ \lt inline-formula \gt $ \mathbb{R} $ \lt /inline-formula \gt \lt sup \gt 3 \lt /sup \gt is a smooth bounded domain with \lt i \gt a \lt /i \gt , \lt i \gt b \lt /i \gt \gt 0, 1 \lt \lt i \gt q \lt /i \gt \lt 2, \lt i \gt μ \lt /i \gt \gt 0. By means of the concentration compactness principle and a dual fountain theorem, we obtain the multiplicity of solutions about this equation.
  • 加载中
  • [1] KIRCHHOFF G. Mechanik[M]. Teubner:Leipzig, 1883.

    Google Scholar

    [2] FIGUEIREDO G M, JVNIOR J R S. Multiplicity of Solutions for a Kirchhoff Equation with Subcritical of Critical Growth[J]. Differential Integral Equations, 2013, 25:853-868.

    Google Scholar

    [3] MA T F, RIVERA J E M. Positive Solutions for a Nonlinear Nonlocal Elliptic Transmission Problem[J]. Applied Mathematics Letters, 2003, 16(2):243-248. doi: 10.1016/S0893-9659(03)80038-1

    CrossRef Google Scholar

    [4] LEI C Y, LIU G S, GUO L T. Multiple Positive Solutions for a Kirchhoff Type Problem with a Critical Nonlinearity[J]. Nonlinear Analysis Real World Applications, 2016, 31:343-355. doi: 10.1016/j.nonrwa.2016.01.018

    CrossRef Google Scholar

    [5] ZHONG X J, TANG C L. Multiple Positive Solutions to a Kirchhoff Type Problem Involving a Critical Nonlinearity[J]. Computers Mathematics with Applications, 2016, 72:2865-2877. doi: 10.1016/j.camwa.2016.10.012

    CrossRef Google Scholar

    [6] LI H Y, LIAO J F. Existence and Multiplicity of Solutions for a Superlinear Kirchhoff-Type Equations with Critical Sobolev Exponent in $ \mathbb{R} $N[J]. Computers Mathematics with Applications, 2016, 72(12):2900-2907. doi: 10.1016/j.camwa.2016.10.017

    CrossRef $ \mathbb{R} $N" target="_blank">Google Scholar

    [7] ANELLO G. A Uniqueness Result for a Nonlocal Equation of Kirchhoff Type and Some Related Open Problem[J]. Journal of Mathematical Analysis Applications, 2011, 373(1):248-251. doi: 10.1016/j.jmaa.2010.07.019

    CrossRef Google Scholar

    [8] CHEN C Y, KUO Y C, WU T F. The Nehari Manifold for a Kirchhoff Type Problem Involving Sign-Changing Weight Functions[J]. Journal of Differential Equations, 2011, 250(4):1876-1908. doi: 10.1016/j.jde.2010.11.017

    CrossRef Google Scholar

    [9] CHENG B. New Existence and Multiplicity of Nontrivial Solutions for Nonlocal Elliptic Kirchhoff Type Problems[J]. Journal of Mathematical Analysis Applications, 2012, 394(2):488-495. doi: 10.1016/j.jmaa.2012.04.025

    CrossRef Google Scholar

    [10] SUN Y J, LIU X. Existence of Positive Solutions for Kirchhoff Type Problems with Critical Exponent[J]. Partial Differ Equ, 2012, 25(2):85-96.

    Google Scholar

    [11] FAN H. Multiple Positive Solutions for a Class of Kirchhoff Type Problems Involving Critical Sobolev Exponents[J]. Journal of Mathematical Analysis Applications, 2015, 431(1):150-168. doi: 10.1016/j.jmaa.2015.05.053

    CrossRef Google Scholar

    [12] LIONS P L. The Concentration-Compactness Prinicple in the Calculus of Variations[J]. Rev Mat Iberoam, 1985(1):145-201.

    Google Scholar

    [13] 刘选状.两类带有临界指数的Kirchhoff型方程的解的存在性和多重性[D].重庆: 西南大学, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10635-1015335341.htm

    Google Scholar

    [14] WILLEM M. Minimax Theorems[M]. Boston:Birkhauser, 1996.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(827) PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors

Multiplicity of Solutions for Kirchhoff Equation with Concave and Convex Nonlinearities

    Corresponding author: Zeng-qi OU

Abstract: In this paper, we study a class of Kirchhoff equation $ \left\{ \begin{array}{l} - \left( {a + b\int_\mathit{\Omega} {{{\left| {\nabla u} \right|}^2}{\rm{d}}x} } \right)\Delta u = {\left| u \right|^4}u + \mu {\left| u \right|^{q - 2}}u\;\;\;\;\;\;\;x \in \mathit{\Omega} \\ u = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega} \end{array} \right. $ with concave and convex nonlinearities, where \lt i \gt Ω \lt /i \gt ⊂ \lt inline-formula \gt $ \mathbb{R} $ \lt /inline-formula \gt \lt sup \gt 3 \lt /sup \gt is a smooth bounded domain with \lt i \gt a \lt /i \gt , \lt i \gt b \lt /i \gt \gt 0, 1 \lt \lt i \gt q \lt /i \gt \lt 2, \lt i \gt μ \lt /i \gt \gt 0. By means of the concentration compactness principle and a dual fountain theorem, we obtain the multiplicity of solutions about this equation.

  • 考虑如下Kirchhoff方程:

    其中Ω$ \mathbb{R} $3中边界光滑的有界开集,且ab>0,1<q<2,μ>0.我们记Sobolev空间H01(Ω)中的范数为

    Ls(Ω)中的范数为

    当1≤s≤6时,嵌入H01(Ω)↺Ls(Ω)是连续的;当1≤s<6时,嵌入是紧的.此外,最佳Sobolev常数为

    由于有bΩ|∇u|2dx这一项,方程(1)被称为非局部问题.众所周知,Kirchhoff型问题起源于文献[1],作为经典的D′Alembert波动方程在弹性弦的自由振动的推广.文献[2]给出一个泛函分析结构,Kirchhoff型问题逐渐引起人们的关注.据我们查阅的文献显示,文献[3]最先将变分法运用到Kirchhoff型问题中.此后,出现了诸多关于Kirchhoff型问题的优秀结论[1-2, 4-9].

    N=3时,文献[4-5, 10]研究了Kirchhoff型方程正解的存在性和多重性.文献[10]研究了0<q<1时的情形,利用Nehari和Ekeland变分原则的方法,得到了“存在一个仅依赖于aT4(a)>0,当a>0,0<λT4(a)时,方程至少有一个正解”的结论.当b充分小时,文献[4]利用极小作用原理和山路引理的方法,获得了方程(1)的两个正解.文献[5]研究了a=1,q=2时的情形,证得方程(1)具有正的基态解.受到文献[4-6, 10-11]的启发,本文将研究$ \mathbb{R} $3空间中方程(1)多解的存在情况,并得到下面的定理:

    定理 1  假设Ω$ \mathbb{R} $3有界,并且ab>0,1<q<2,则存在μ*>0,使得对∀0<μμ*,方程(1)有一列解{un},并且φμ(un)<0,φμ(un)→0(n→∞).

    我们定义φμ(u)为方程(1)对应的能量泛函,即

    如果uH01(Ω),且对∀vH01(Ω),都有

    u为方程(1)的弱解.

    X是自反的可分Banach空间,则存在eiXej*=X*,使得:

    Xj=span{ej},于是$ X = \overline {{ \otimes _{j \ge 1}}{X_j}} $.记Yk=⊕j=1kXj$ {Z_k} = \overline {{ \oplus _{j \ge k}}{X_j}} $.

    引理 1  假设abμ>0,1<q<2,以及$ c < \mathit{\Lambda} - D{ \mu^{\frac{2}{{2 - q}}}} $,则泛函φμ满足局部(PS)c*条件,其中:

      取H01(Ω)中的标准正交基(ej),并且定义Xj=$ \mathbb{R} $ej.假设{unj}是泛函φμ的(PS)c*序列,即

    现证明{unj}在H01(Ω)中有收敛子列.首先,由(3),(4)式、Hölder不等式以及Sobolev不等式,有

    由于1<q<2,根据(5)式,可知{unj}在H01(Ω)中有界.因此,存在{unj}的子列(不妨仍记为{unj})以及uH01(Ω),使得

    根据第二集中性引理[12],我们可以找到一个至多可数的指标集Γ、在$ \mathbb{R} $3中的一个序列{xk}kΓ,以及{ηk}kΓ,{νk}kΓ$ \mathbb{R} $+,使得:

    其中δxk是在xk上的Diracdelta函数.接下来,我们证明Γ=.假设Γ,不妨设kΓ,对∀ε>0,设ψεkC0($ \mathbb{R} $3,[0, 1])满足条件0≤ψεk≤1,|∇ψεk|≤C,且:

    由于{ψεkunj}在H01(Ω)上有界,我们有〈φμ′(unj),ψεkunj〉→0,即

    由于{unj}在H01(Ω)上有界,并且由Hölder不等式,则存在常数C1C2C3>0,有

    从而

    由(6)式,我们可知

    由(7)式得

    由(12)式得

    由(10)-(13)式,可推得

    和(8)式比较,可得:

    (ⅰ) ηk=0;

    (ⅱ) $ {{\eta }_{k}}\ge \frac{b{{S}^{3}}+S\sqrt{{{b}^{2}}{{S}^{4}}+4aS}}{2} $.

    我们证明(ⅱ)不成立.根据文献[13]的引理2.2、Hölder不等式、Sobolev不等式,以及(6),(7),(14)式,可得

    若(ⅱ)成立,则

    为了估计$ \frac{aS}{4}\left| u \right|_{6}^{2}-\mu \left( \frac{1}{q}-\frac{1}{4} \right)|\mathit{\Omega }{{|}^{\frac{6-q}{6}}}\left| u \right|_{6}^{q} $,我们考虑

    得到$ \mathop {{\rm{min}}}\limits_{t \ge 0} f\left( t \right) = f({t_1}) = - D{\mu ^{\frac{2}{{2 - q}}}} $,其中:

    因此,由(13)-(15)式,可知

    故矛盾,所以(ⅱ)不成立,则ηk=0,即Γ=.所以我们可得出结论

    接下来证明在H01(Ω)中unju.不妨设$ \mathop {{\rm{lim}}}\limits_{{n_j} \to \infty } {\left\| {{u_{{n_j}}}} \right\|^2} = {d^2} $,则需证‖u2=d2.事实上,

    因此,unju(xH01(Ω)).所以,当$c < \mathit{\Lambda} - D{\mu ^{\frac{2}{{2 - q}}}} $时,泛函φμ满足局部(PS)c*条件.

    定理1的证明  我们将用文献[14]中的对偶喷泉定理证明定理1.下面将证明对∀kk0,存在ρkγk>0,使得:

    $ ({{\rm{B}}_1}) {a_k} = \mathop {{\rm{inf}}}\limits_{u \in {Z_k}, \left\| u \right\| = {\rho _k}} \varphi (u) \ge 0; $

    $ ({{\rm{B}}_2}) {b_k} = \mathop {{\rm{max}}}\limits_{u \in {Y_k}, \left\| u \right\| = {\gamma _k}} \varphi (u) < 0; $

    $ ({{\rm{B}}_3})\;{d_k} = \mathop {{\rm{inf}}}\limits_{u \in {Z_k}, {\rm{ }}\left\| u \right\| = {\rho _k}} \to 0, \;k \to \infty . $

    事实上,为了证明条件(B1),我们定义${\beta _k} = \mathop {{\rm{sup}}}\limits_{u \in {Z_k}, \left\| u \right\| = 1} {\left| u \right|_q} $.由文献[6]的引理3.8,有βk→0(k→∞).同时存在R>0,使得

    那么当uZk,‖u‖≤R时,有

    $ {\rho _k} = {\left( {\frac{{4\mu \beta _k^q}}{{aq}}} \right)^{\frac{1}{{2 - q}}}} $,有ρk→0(k→∞).所以,存在k0,当kk0时,使得ρkR.因此,当uZk,‖u‖=ρkR时,有φμ(u)≥0.故条件(B1)成立.

    对于条件(B2),由于dim Yk<∞,所以Yk上的任意范数等价,则存在常数C4C5>0,有:

    那么对∀uYk,且‖u‖=γk,有

    由于μ>0,C5>0,显然,存在充分小的γk,使得φμ(u)<0,所以条件(B2)成立.

    对于条件(B3),由(16)式,得

    又由于βk→0(k→∞),存在k0,当kk0,且uZk,‖u‖≤ρk时,有$ {\varphi _\mu }(u) \ge - \beta _k^q\frac{\mu }{q}\rho _k^q $.故条件(B3)成立.由引理1知,存在μ*>0,使得对每个0<μμ*c<0,泛函φμ满足局部(PS)c*条件.定理1证毕.

Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return