Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 42 Issue 10
Article Contents

Fang YU, Wen-jing CHEN. Existence of Solutions for a Fractional Laplacian Problem with Critical Exponential Growth[J]. Journal of Southwest University Natural Science Edition, 2020, 42(10): 116-123. doi: 10.13718/j.cnki.xdzk.2020.10.015
Citation: Fang YU, Wen-jing CHEN. Existence of Solutions for a Fractional Laplacian Problem with Critical Exponential Growth[J]. Journal of Southwest University Natural Science Edition, 2020, 42(10): 116-123. doi: 10.13718/j.cnki.xdzk.2020.10.015

Existence of Solutions for a Fractional Laplacian Problem with Critical Exponential Growth

More Information
  • Corresponding author: Wen-jing CHEN
  • Received Date: 05/02/2020
    Available Online: 20/10/2020
  • MSC: O176.3

  • In this paper, we consider the existence of nontrivial solutions to a fractional quasilinear problem, whose nonlinear term is related to the fractional Trudinger-Moser-type inequality. The associated energy functional lacks compactness, because the nonlinear term f(x, u) is of critical exponential growth, which behaves like e$\mathrm{e}^{\alpha|u|^{\frac{N}{N-s}}} $ as u→+∞ for some α > 0.
  • 加载中
  • [1] TRUDINGER N. On Imbeddings into Orlicz Spaces and Some Applications [J]. J Math Mech, 1967, 17: 473-483.

    Google Scholar

    [2] MOSER J. A Sharp Form of an Inequality by N. Trudinger [J]. Indiana Univ Math J, 1970, 71(20): 1077-1092.

    Google Scholar

    [3] 陈卫, 唐春雷.一类超线性分数阶Schrödinger方程解的多重性[J].西南师范大学学报(自然科学版), 2019, 44(4): 26-30.

    Google Scholar

    [4] NEZZA E D, PALATUCCI G, VALDINOCI E. Hitchhiker's Guide to the Fractional Sobolev Spaces [J]. Bull Sci Math, 2012, 136(5): 521-573. doi: 10.1016/j.bulsci.2011.12.004

    CrossRef Google Scholar

    [5] MOLICA BISCI G, RÂDULESCU V, SERVADEI R. Variational Methods for Nonlocal Fractional Equations [M]. Cambridge: Cambridge University Press, 2016.

    Google Scholar

    [6] 张维, 唐春雷.一类次线性分数阶Schrödinger方程的无穷多解[J].西南大学学报(自然科学版), 2018, 40(6): 78-83.

    Google Scholar

    [7] 叶景兰, 邓圣兵.带有一般非线性项的分数阶Kirchhoff-Schrödinger-Poisson系统的变号解[J].西南师范大学学报(自然科学版), 2019, 44(4): 16-21.

    Google Scholar

    [8] PARINI E, BUF B. On the Moser-Trudinger Inequality in Fractional Sobolev-Slobodeckij Spaces [J]. Journal d'Analvse Mathematique, 2019, 138(1): 281-300. doi: 10.1007/s11854-019-0029-3

    CrossRef Google Scholar

    [9] DE SOUZA M, ARAUJO Y L. Semilinear Elliptic Equations for the Fractional Laplacian Involving Critical Exponential Growth [J]. Math Methods Appl Sci, 2017, 40(5): 1757-1772. doi: 10.1002/mma.4095

    CrossRef Google Scholar

    [10] IANNIZZOTTO A, SQUASSINA M. 1/2-Laplacian Problems with Exponential Nonlinearity [J]. J Math Anal Appl, 2014, 414(1): 372-385.

    Google Scholar

    [11] LI Q, YANG Z D. Multiple Solutions for a Class of Fractional Quasi-Linear Equations with Critical Exponential Growth in RN [J]. Complex Var Elliptic Equ, 2016, 61(7): 969-983. doi: 10.1080/17476933.2015.1131683

    CrossRef Google Scholar

    [12] PERERA K, SQUASSINA M. Bifurcation Results for Problems with Fractional Trudinger-Moser Nonlinearity [J]. Discrete Contin Dyn Syst, 2018, 11(3): 561-576. doi: 10.3934/dcdss.2018031

    CrossRef Google Scholar

    [13] BEZERRA DO J M. Semilinear Dirichlet Problems for the N-Laplacian in RN with Nonlinearities in the Critical Growth Range [J]. Differential and Integral Equations, 1996, 9(5): 967-979.

    Google Scholar

    [14] FIGUEIREDO D G, MIYAGAKI O H, RUF B. Elliptic Equations in R2 with Nonlinearities in the Critical Growth Range [J]. Calc Var Partial Differential Equations, 1996, 4(2): 139-153.

    Google Scholar

    [15] LAM N, LU G. Existence and Multiplicity of Solutions to Equations of N-Laplacian Type with Critical Exponential Growth in RN [J]. J Funct Anal, 2012, 262(3): 1132-1165. doi: 10.1016/j.jfa.2011.10.012

    CrossRef Google Scholar

    [16] MAWHIN J, WILLEM M. Critical Point Theory and Hamiltonian System [M]. Berlin: Springer-Verlag, 1989.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(911) PDF downloads(192) Cited by(0)

Access History

Other Articles By Authors

Existence of Solutions for a Fractional Laplacian Problem with Critical Exponential Growth

    Corresponding author: Wen-jing CHEN

Abstract: In this paper, we consider the existence of nontrivial solutions to a fractional quasilinear problem, whose nonlinear term is related to the fractional Trudinger-Moser-type inequality. The associated energy functional lacks compactness, because the nonlinear term f(x, u) is of critical exponential growth, which behaves like e$\mathrm{e}^{\alpha|u|^{\frac{N}{N-s}}} $ as u→+∞ for some α > 0.

  • 本文中,我们考虑如下问题:

    其中Ω$\mathbb{R}^{N} $中的光滑有界区域,0<s<1,非线性项f(xu)满足:当u→∞时临界指数增长,$ (-\Delta)_{\frac{N}{s}}^{s}$是分数阶拉普拉斯算子,定义为

    其中Bε(x)表示$\mathbb{R}^{N} $中球心在x处,半径为ε>0的球.

    众所周知,对任意的1≤p<∞,W01,N(Ω)↺Lp(Ω)成立,但W01,N(Ω)⊈L(Ω).文献[1]得到了W01,N(Ω)能以最大增长速度$ \phi(t)=\mathrm{e}^{|t|^{\frac{N}{N-1}}}-1$嵌入到Orlicz空间Lϕ(Ω)中.随后,文献[2]得到了下列结果:

    其中$ \alpha_{N}=N \omega_{N-1}^{\frac{1}{N-1}}, \omega_{N-1}$表示$\mathbb{R}^{N} $中单位球的球表面测度,|Ω|表示Ω的测度.近年来,有关分数阶椭圆型问题的研究受到了广泛关注[3-7].关于分数阶Trudinger-Moser不等式的研究,文献[8]给出了Sobolev-Slobodeckij空间$ W_{0}^{s, \frac{N}{s}}(\varOmega)$中的相关结果,即存在正的有限的αNs,使得对所有ααNs,有

    其中

    另外,存在$\alpha_{N, s}^{*} \geqslant \alpha_{N, s} $,使得对于任意的ααNs*,(2)式中的上确界为正无穷.但是αNs*αNs是否相等,仍然是一个值得探索的问题.文献[9-12]讨论了非线性项是临界指数增长的分数阶问题解的存在性以及多解性,相应的局部情形的相关结果可参见文献[13-15].

    本文中,我们主要研究问题(1)的非平凡解的存在性,假设非线性项f(xu)满足下列条件:

    (F1) f在无穷远处满足临界指数增长,即存在常数α0>0,使得:当αα0时,$\lim\limits_{t \rightarrow \infty} f(x, t) \mathrm{e}^{-\alpha|t|^{\frac{N}{N-s}}}=0 $;当αα0时,$ \lim\limits_{t \rightarrow \infty} f(x, t) \mathrm{e}^{-\alpha|t|^{\frac{N}{N-s}}}=\infty$.

    (F2)存在t0>0,M0>0,使得对∀(xt)∈Ω×[t0,+∞),有

    (F3)对∀(xt)∈Ω×(0,+∞),存在$ \theta>\frac{N}{s}$,使得

    (F4)对$ \forall x \in \varOmega, \limsup\limits_{t \rightarrow 0^{+}} \frac{N F(x, t)}{s|t|^{\frac{N}{s}}}<\lambda$一致成立,其中

    (F5)对∀(xt)∈Ω×(0,+∞),存在常数$q>\frac{N}{s} $Cq,使得f(xt)≥Cqtq-1,其中

    定义1   对$ \forall \phi \in W_{0}^{s, \frac{N}{s}}(\varOmega)$,若$ \langle u, \phi\rangle_{s, \frac{N}{s}}=\int_{\varOmega} f(x, u) \phi \mathrm{d} x$,则称$ u \in W_{0}^{s, \frac{N}{s}}(\varOmega)$是问题(1)的一个弱解.其中

    本文的主要结果如下:

    定理1  假设N≥1,0<s<1,条件(F1)-(F5)成立,则问题(1)存在一个非平凡的弱解.

    注1  令f(t)=F′(t),其中$ F(t)=t^{\mu} \mathrm{e}^{\alpha_{0}|t|^{\frac{N}{N-s}}}, t \geqslant 0$t≥0并且$ \mu>\frac{N}{s}$,则f满足定理1中所有的假设.

    问题(1)的能量泛函J定义为

    由条件(F1)-(F3)与分数阶Trudinger-Moser不等式(2),可得F(xu)∈L1(Ω),且对$ \forall u, v \in W_{0}^{s, \frac{N}{s}}(\varOmega)$,有f(xu)vL1(Ω).因此$ J \in C^{1}\left(W_{0}^{s, \frac{N}{s}}(\varOmega), \mathbb{R}\right)$.另外,存在正的常数cC,使得

    通过直接计算可得

    引理1[16]  令(X,‖·‖X)是实的Banach空间,IC1(XR)满足I(0)=0,并且满足:

    (ⅰ)存在常数ρα>0,使得$ \left.I\right|_{\partial B_{\rho}} \geqslant \alpha$

    (ⅱ)存在eX\Bρ,使得I(e)<0.

    那么常数

    存在序列{uk}⊂X,使得I(uk)cI′(uk)0,其中

    引理2[12]  (Lions-type引理)  假设{uk}k$W_{0}^{s, \frac{N}{s}}(\varOmega) $中的有界序列,满足‖uk‖=1,uku≠0.若$1<p<P=\left(1-\|u\|^{\frac{N}{s}}\right)^{-\frac{s}{N-s}} $,则

    引理3  假设条件(F1)-(F4)成立,则:

    (ⅰ)存在正的常数ρδ,使得当‖u‖=ρ时,有J(u)≥δ

    (ⅱ)存在$e \in W_{0}^{s, \frac{N}{s}}(\varOmega) $,使得‖e‖>ρ,但是J(e)<0.

       (ⅰ)   由条件(F4),存在τδ0>0,当|u|≤δ0xΩ时,我们有

    从(4)式可知,存在$r>\frac{N}{s}, C_{1}>0 $,当|u|≥δ0xΩ时,有

    因此

    选取ρ>0使得$ 2 c \rho^{\frac{N}{N-s}} \leqslant \alpha_{N, s}$,由(2)式可得,对$\forall u \in W_{0}^{s, \frac{N}{s}}(\varOmega) $,满足‖u‖=ρ时,有

    因为

    所以

    则(ⅰ)得证.

    (ⅱ)由条件(F3)可知,存在正的常数c1c2,对任意的t≥0,使得F(xt)≥c1tθ-c2,于是

    则由$\theta>\frac{N}{s} $知,当t→∞时,有J(tu)→-∞,结果得证.

    命题1  若$c<\frac{s}{N}\left(\frac{\alpha_{N, s}}{\alpha_{0}}\right)^{\frac{N-s}{s}} $,则泛函J满足(PS)c条件.

      设$\left\{u_{k}\right\} \subset W_{0}^{s, \frac{N}{s}}(\varOmega) $是泛函J的一个(PS)c序列,即当k→∞时,有

    这里当k→∞,εk→0时,由条件(F3)可得

    因此,uk$W_{0}^{s, \frac{N}{s}}(\varOmega) $中有界.由(7)式和(8)式,我们有

    从而存在弱收敛子列,仍然记为{uk},在$W_{0}^{s, \frac{N}{s}}(\varOmega) $中,uku;对∀r≥1,在Lr(Ω)中,uku;在Ω中,uku几乎处处成立.从文献[14]的引理2.1可知,在L1(Ω)中,当k→∞时,有f(xuk)→f(xu).由条件(F1)和广义的Lebesgue控制收敛定理知,在L1(Ω)中,当k→∞时,有

    由(7)式,我们有

    利用条件(F3)和(8)式,可知

    所以c≥0.利用(8)式,可得对∀vC0(Ω),有

    利用C0(Ω)在$W_{0}^{s, \frac{N}{s}}(\varOmega) $中的稠密性,所以,u是问题(1)的一个弱解.

    接下来,将分成3种情形讨论:在$W_{0}^{s, \frac{N}{s}}(\varOmega) $中,当k→∞时,uku.

    情形1   c=0.

    此时,有

    这说明

    且当k→∞时,‖uk‖→‖u‖.

    情形2   c>0且u=0.

    在此种情形下,由(7)式和(8)式,我们有

    这是不可能成立的.因为f是临界增长的,那么,对∀ε>0和ζ>1,存在tε>0和Cεζ>0,使得当|t|≥tεxΩ时,有

    故有

    可知存在η∈(0,1),使得

    又因为$\left\|u_{k}\right\|^{\frac{N}{s}} \rightarrow \frac{N}{s} c $,所以,存在kη>0,使得对∀kkη,有

    只需取ε>0足够小,使得$\alpha_{0}(1+\varepsilon)\left\|u_{k}\right\|^{\frac{N}{N-s}} \leqslant \alpha_{N, s} $成立,那么

    由分数阶Trudinger-Moser不等式(2)可知,存在ζ>1,使得

    由(11)式和(8)式,取v=uk,再由Hölder不等式,当k→+∞时,我们可得

    其中$ \frac{1}{\zeta}+\frac{1}{\zeta^{\prime}}=1$,并且ζ>1.因此c=0,这与所假设的c>0矛盾.

    情形3   c>0且u≠0.

    在此情形中,我们将证c=J(u),同时,这也说明了

    事实上,在$ W_{0}^{s, \frac{N}{s}}(\varOmega)$中,由范数的弱下半连续性知

    因此J(u)≤c.反证法,假设J(u)<c,它等价于

    因为在$ W_{0}^{s, \frac{N}{s}}(\varOmega)$中,vkvv≠0,‖vk‖=1且‖v‖≤1,所以,由引理2,对$ \forall 1<p<\frac{1}{\left(1-\|v\|^{\frac{N}{s}}\right)^{\frac{s}{N-s}}}$,可得

    紧接着,当ζ>1时,将估计f(xuk)的Lζ范数.由引理2和(10)式可得

    其中,对$ \forall 1<p<\frac{1}{\left(1-\|v\|^{\frac{N}{s}}\right)^{\frac{s}{N-s}}}$,需满足$\alpha_{0}(1+\varepsilon)\left\|u_{k}\right\|^{\frac{N}{N-s}} \leqslant p \alpha_{N, s} $.由v的定义可得

    因为

    所以

    其中

    J(u)≥0和$ c<\frac{s}{N}\left(\frac{\alpha_{N, s}}{\alpha_{0}}\right)^{\frac{N-s}{s}}$,可选取ε>0,使得(12)式成立.

    定理1的证明  由引理3可知,J存在一个(PS)c序列{uk},并且

    由命题1,我们只需证

    事实上,由Sobolev嵌入,存在函数w(x),使得

    且‖w‖=Sq.从引理3(ⅱ),可推断出:当t→+∞时,有J(tw)→-∞.因此,由条件(F5)可得

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return