-
若随机吸引子的后向并是预紧的,则称该吸引子为后向紧随机吸引子. 文献[1-2]对非自治动力系统所产生的拉回吸引子的存在性和后向紧性做了深入的研究,并建立了相对完善的理论体系. 文献[3-6]对非自治方程的吸引子的存在性进行了研究,文献[7-8]对自治p-Laplacian格点方程吸引子的存在性做了研究. 本文将在文献[8]的基础上,研究非自治情况下,带有乘法噪音的随机p-Laplacian格点方程的后向紧吸引子的存在性.
HTML
-
定义1 设(Ω,
$\mathscr{F}$ ,P)是一个概率空间,θ={θt}t∈ℝ:ℝ×Ω→Ω是一簇($\mathscr{B}$ (ℝ)×$\mathscr{F}$ ,$\mathscr{F}$ )保测映射,使得θt(0,·)是Ω上的恒等映射,且满足则称(Ω,
$\mathscr{F}$ ,P,θ)是一个度量动力系统.定义2 令(Ω,
$\mathscr{F}$ ,P,θ)是度量动力系统,若存在映射Φ:ℝ+×ℝ×Ω×X→X,使得对任意ω∈Ω,τ∈ℝ及t,s∈ℝ+,满足:(ⅰ) Φ(·,τ,·,·):ℝ+×Ω×X→X是(B(ℝ+)×
$\mathscr{F}$ ×B(X),B(X))可测的;(ⅱ) Φ(0,τ,ω,·)是X上的恒等映射;
(ⅲ) Φ(t+s,τ,ω,·)=Φ(t,τ+s,θsω,·)
$\circ $ Φ(s,τ,ω,·);(ⅳ) Φ(t,τ,ω,·):X→X是连续的.
则称映射Φ是关于(Ω,
$\mathscr{F}$ ,P,θ)的非自治动力系统,也称协循环.定义3 设
$\mathscr{D}$ ={$\mathscr{D}$ (t,ω)}是X中的集合,若对∀x∈X,τ∈ℝ,函数f:ω→d(x,$\mathscr{D}$ (t,ω))是($\mathscr{F}$ ,$\mathscr{B}$ (ℝ+))可测的,则称D为随机集.定义4 令
$\mathscr{B}$ 是X的所有有界非空子集族构成的集合,假设集合若对任意的τ∈ℝ,ω∈Ω,D∈
$\mathscr{B}$ ,存在T=T(τ,ω,D)>0,使得当t≥T时有则称
$\mathscr{K}$ 为Φ的$\mathscr{B}$ -拉回吸收集.
-
本文将在l2空间上讨论带有乘法噪音的非自治随机p-Laplacian格点方程
其中
$\mathbb{Z}$ 代表整数集,λ,α>0,p>2,W(t)是双边实值Wiener过程,$\circ $ 代表Stratonovich积分意义下的乘法噪音. 对于外力项$f{{\left( {{f}_{i}} \right)}_{i\in \mathbb{Z}}}$ 和非自治项$g{{\left( {{g}_{i}} \right)}_{i\in \mathbb{Z}}}$ 有如下假设:(F1) fi∈C1(ℝ),
$\underset{i\in \mathbb{Z}}\sup\limits\, \left| f_{i}^{\prime }(u) \right|$ 局部有界,且fi满足(F2) g∈Lloc2(ℝ,l2),且满足
定义l2上的有界算子:
因此,根据算子的定义,有
微分方程(1)可整理为
下面证明方程(6)能生成随机动力系统.
做变量替换v(t)=e-αz(θtω)u(t). 其中u(t)是方程(6)的解,
$z\left( {{\theta }_{t}}\omega \right)=-\int_{-\infty }^{0}{{{\text{e}}^{r}}}{{\theta }_{t}}\omega (r)\text{d}r$ 是方程dz+zdt=dω(t)的解. 由文献[9-10]可知,对任意ω∈Ω,z(θtω)关于t连续,且满足因此方程(6)可转化为关于v的随机微分方程
由文献[8]可知,对任意T>0,v0∈l2,ω∈Ω,方程(8)存在唯一的解v(·,τ,ω,v0)∈C([τ,+∞),l2),且依赖初值v0连续. 因此方程(8)在(Ω,
$\mathscr{F}$ ,P,{θt}t∈ℝ)上能生成一个连续的随机动力系统{Φ(t)}t≥0,即对v0∈l2,t≥0,τ∈ℝ,和ω∈Ω,有在下文中,设
${{\mathbb{D}}_{0}}$ 是X中所有缓增集构成的集合,$\mathbb{D}$ 是X中所有后向缓增集构成的集合. 若集合$\mathscr{D}_{0}$ 满足则称集合
$\mathscr{D}_{0}$ 为缓增集;若集合$\mathscr{D}$ 满足则称集合
$\mathscr{D}$ 为后向缓增集.假设集合
${{\mathbb{D}}_{0}}$ 与$\mathbb{D}$ 是包含封闭的. 若集合$\mathbb{D}$ 满足$\mathscr{A}$ ⊂${\tilde{\mathscr{A}}}$ 且${\tilde{\mathscr{A}}}$ ∈$\mathbb{D}$ ,有${\tilde{\mathscr{A}}}$ ∈$\mathbb{D}$ 成立,则称集合$\mathbb{D}$ 是包含封闭的.
-
引理1 若假设(F1),(F2)成立,那么有:
(ⅰ) 对任意缓增集
${{\mathscr{D}}_{0}}$ ∈${{\mathbb{D}}_{0}}$ ,任意的τ∈$\mathbb{R}$ ,ω∈Ω,vτ-t∈${{\mathscr{D}}_{0}}$ (τ-t,θ-tω),存在T0=T0(${{\mathscr{D}}_{0}}$ ,τ,ω)≥1,使得其中R0(τ,ω)是可测函数,定义为
(ⅱ) 对任意后向缓增集
${\tilde{\mathscr{D}}}$ ∈$\mathbb{D}$ ,任意的τ∈ℝ,ω∈Ω,vs-t∈${\tilde{\mathscr{D}}}$ (s-t,θ-tω),存在T=T(${\tilde{\mathscr{D}}}$ ,τ,ω)≥1,使得其中
证 对任意固定的τ∈ℝ,ω∈Ω,vs-t∈D(s-t,θ-tω),令v(r)=v(r,s-t,θ-sω,vs-t),其中s≤τ. v(r)与方程(8)作内积可得
利用(2),(5)式整理(15)式,可得
利用Hölder不等式及Young不等式,有
代入(16)式可得
对(18)式利用Gronwall不等式,计算可得
再由(7)式、(9)式可知,存在T0(
${{\mathscr{D}}_{0}}$ ,s,ω)≥1,使得当t≥T0时,有因此(11)式得证.
对(19)式关于s∈(-∞,τ]取上确界,由于vs-t∈
$\mathscr{D}$ (s-t,θ-tω)(s≤τ),结合(7)式、(10)式可知,存在T=T(s,ω,$\mathscr{D}$ )≥1,使得当t≥T时,有因此可以得到
即(13)式得证.
引理2 若假设(F1),(F2)成立,则有如下结论:
(ⅰ) 协循环{Φ(t)}t≥0存在
${{\mathbb{D}}_{0}}$ -拉回随机吸收集${{\mathscr{k}}_{0}}$ ∈${{\mathbb{D}}_{0}}$ ,其中(ⅱ) 协循环{Φ(t)}t≥0存在
$\mathbb{D}$ -拉回后向一致吸收集$\mathscr{K}$ ∈$\mathbb{D}$ ,其中证 由(11)式可知
${{\mathscr{k}}_{0}}$ 是吸收集. 又因为函数ω→R0是随机变量的积分,因此R0(τ,ω)是可测的,进而可知${{\mathscr{k}}_{0}}$ 也是可测的. 下证${{\mathscr{k}}_{0}}$ ∈${{\mathbb{D}}_{0}}$ .首先证明R(τ,ω)是有限的. 根据(7)式可知,对任意ε>0,存在C=C(ε,ω)>0,使得
因此,在(25)式中令
$\varepsilon <\frac{\lambda }{4\alpha }$ ,结合(3)式可得再证
$\mathscr{K}$ ∈${{\mathbb{D}}_{0}}$ . 令${{\alpha }_{1}}=\min \left\{ \lambda , \frac{\gamma }{2} \right\}$ ,在(25)式中令$\varepsilon =\frac{{{\alpha }_{1}}}{4\alpha }$ ,结合(3)式可知,对任意的γ∈ℝ,有所以
$\mathscr{K}$ ∈${{\mathbb{D}}_{0}}$ . 又由于${\mathscr{K}}_{0}$ ⊂$\mathscr{K}$ ,因此${\mathscr{K}}_{0}$ ∈${{\mathbb{D}}_{0}}$ .最后证明
$\mathscr{K}$ ∈$\mathbb{D}$ . 根据(24)式,易知集合$\mathscr{K}$ 是递增的,即因此,结合
$\mathscr{K}$ ∈${{\mathbb{D}}_{0}}$ 可知,对任意γ>0,有即证得
$\mathscr{K}$ ∈$\mathbb{D}$ . 再由(13)式可知,$\mathscr{K}$ 在任意集合$\mathscr{D}$ ∈$\mathbb{D}$ 上是后向一致吸收的.引理3 若假设(F1),(F2)成立,则对∀ε>0,(τ,ω,
$\mathscr{D}$ )∈($\mathbb{R}$ ×Ω×$\mathbb{D}$ ),vs-t∈$\mathscr{D}$ (s-t,θ-tω),存在T(ε,τ,ω,$\mathscr{D}$ )>0,N(ε,τ,ω,$\mathscr{D}$ )≥1,使得证 构造光滑函数ρ,满足0≤ρ≤1,且当|s|≤1时,ρ=0;当|s|≥2时,ρ=1. 并假设存在常数c0,使得对任意s∈ℝ,有|ρ′(s)|≤c0. 令N是一个固定的整数,设
x与(8)式作内积可得
其中
由于|ρ′(s)|≤c0,因此
故由(29)式、(30)式可得
由假设(F1)可知
由Young不等式可知
结合(31)-(33)式,可得
对(34)式运用Gronwall引理,计算整理可得
由于vs-t∈
$\mathscr{D}$ (s-t,θ-tω)(s≤τ),结合(7),(10)式可得在(25)式中令
$\varepsilon <\min \left\{ \frac{\lambda }{2\alpha (p-2)}, \frac{\lambda }{4\alpha } \right\}$ ,由引理1与假设(F2)可知,存在T>0,当t>T时,有因此,结合(36)-(38)式可得,对任意的ε>0,(τ,ω,
$\mathscr{D}$ )∈($\mathbb{R}$ ×Ω×$\mathbb{D}$ ),vs-t∈$\mathscr{D}$ (s-t,θ-tω),存在T(ε,τ,ω,$\mathscr{D}$ )>0,N(ε,τ,ω,$\mathscr{D}$ )≥1,使得引理4 若假设(F1),(F2)成立,则协循环{Φ(t)}t≥0在吸收集
$\mathscr{K}$ ∈$\mathscr{D}$ 上是后向渐近紧的.证 对任意固定的τ∈ℝ,ω∈Ω,取任意序列{τk}≤τ,{tk}→+∞(k→+∞),及任意的v0∈K(τk-tk,θ-tkω). 定义vk=Φ(tk,τk-tk,θ-tkω,v0)=v(τk,τk-tk,θ-τkω,v0),下证{vk:k∈N}在l2中是预紧的.
由引理1可知{vk}在l2中有界,故存在
${\tilde{v}}$ ∈l2,使得下面只需证明该弱收敛实际上是强收敛,即只需证明:
对任意ε>0,存在T>0和K≥1,使得当k>K时,有
注意到
一方面,由引理3可知,对任意ε>0,存在T1>0,N1,K1≥1,使得当k>K1时,有
另一方面,由于在l2中,有vk⇀
${\tilde{v}}$ ,因此,当|i|≤N时,在ℝ2N+1中有vk→${\tilde{v}}$ . 故对任意ε>0,存在T2>0,N2,K2≥1,使得当k>K2时,有由(42)-(44)式可知,令
则对任意ε>0,存在T≥T和K≥K,使得当k>K时,有
即证得协循环{Φ(t)}t≥0在吸收集K上是后向渐近紧的.
-
定理1 若假设(F1),(F2)成立,则方程(1)生成的动力系统存在后向紧随机吸引子.
证 引理2和引理4的结论满足了文献[11]的定理3.9中拉回吸引子的存在性条件,因此方程(8)生成的非自治随机动力系统Φ(t)存在唯一的后向紧
$\mathscr{D}$ -拉回吸引子$\mathscr{A}$ ∈$\mathscr{D}$ ,和唯一的可测${{\mathscr{D}}_{0}}$ -拉回吸引子${{\mathscr{A}}_{0}}$ ∈${{\mathscr{D}}_{0}}$ . 再由文献[9]的定理6.1知$\mathscr{A}$ =${{\mathscr{A}}_{0}}$ ,故吸引子$\mathscr{A}$ 也是随机的,即Φ(t)存在唯一的后向紧$\mathscr{D}$ -拉回随机吸引子$\mathscr{A}$ ∈$\mathscr{D}$ . 再由文献[12-13]知方程(1)与方程(8)生成的随机动力系统共轭,进而可知方程(1)存在后向紧随机吸引子.