Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2025 Volume 47 Issue 3
Article Contents

JIN Yali, JIE Zhiqian, FAN Xianming. Risk Factors and Predictors of Sepsis Complicated with ARDS: A Meta-analysis[J]. Journal of Southwest University Natural Science Edition, 2025, 47(3): 168-178. doi: 10.13718/j.cnki.xdzk.2025.03.015
Citation: JIN Yali, JIE Zhiqian, FAN Xianming. Risk Factors and Predictors of Sepsis Complicated with ARDS: A Meta-analysis[J]. Journal of Southwest University Natural Science Edition, 2025, 47(3): 168-178. doi: 10.13718/j.cnki.xdzk.2025.03.015

Risk Factors and Predictors of Sepsis Complicated with ARDS: A Meta-analysis

More Information
  • Corresponding author: FAN Xianming
  • Received Date: 18/11/2024
    Available Online: 20/03/2025
  • MSC: R441.9

  • A meta-analysis was conducted to evaluate the risk factors and predictors of sepsis complicated with acute respiratory distress syndrome (ARDS) in patients. Relevant studies on sepsis complicated by ARDS were retrieved from following databases: CNKI, Wanfang Data Knowledge Service Platform, VIP, Sinomed, PubMed, EMBASE, Web of Science and the Cochrane Library. The searched period was from January 1, 2016 to August 15, 2024. The search English terms included Sepsis, Acute respiratory distress syndrome, Risk factors, Prevalence, Incidence, Mortality, and Biomarkers. Statistical analysis was performed using Stata SE 15.1 software. A total of 35 studies were included, involving 3 715 patients with sepsis complicated by ARDS. The results indicated that the overall incidence of ARDS in patients with sepsis was 28.8%. In the analyzed risk factors, age, smoking history, pulmonary infection, comorbid chronic obstructive pulmonary disease (COPD), pancreatitis, shock, APACHE Ⅱ score, SOFA score, serum lactate, and serum HMGB1 were all found to be significantly associated with the development of ARDS in sepsis. Regarding to the predictive markers, the APACHE Ⅱ score, SOFA score, C-reactive protein (CRP), and PaO2/FiO2 ratio demonstrated significant predictive value. In summary, the incidence of sepsis complicated with ARDS is relatively high, and many risk factors are associated with the increase of the likelihood of its occurrence.

  • 加载中
  • [1] ANGUS D C, VAN DER POLL T. Severe Sepsis and Septic Shock[J]. The New England Journal of Medicine, 2013, 369(9): 840-851. doi: 10.1056/NEJMra1208623

    CrossRef Google Scholar

    [2] BOS L D J, WARE L B. Acute Respiratory Distress Syndrome: Causes, Pathophysiology, and Phenotypes[J]. The Lancet, 2022, 400(10358): 1145-1156. doi: 10.1016/S0140-6736(22)01485-4

    CrossRef Google Scholar

    [3] XU H K, SHENG S Y, LUO W W, et al. Acute Respiratory Distress Syndrome Heterogeneity and the Septic ARDS Subgroup[J]. Frontiers in Immunology, 2023(14): 1277161.

    Google Scholar

    [4] 张书娟, 王勇, 代晓明, 等. 脓毒症相关急性呼吸窘迫综合征的危险因素及预后分析[J]. 中国急救医学, 2022, 42(4): 331-336.

    Google Scholar

    [5] MOAZED F, HENDRICKSON C, JAUREGUI A, et al. Cigarette Smoke Exposure and Acute Respiratory Distress Syndrome in Sepsis Epidemiology, Clinical Features, and Biologic Markers[J]. American journal of respiratory and critical care medicine, 2022, 205(8): 927-35. doi: 10.1164/rccm.202105-1098OC

    CrossRef Google Scholar

    [6] SEETHALA R R, HOU P C, AISIKU I P, et al. Early Risk Factors and the Role of Fluid Administration in Developing Acute Respiratory Distress Syndrome in Septic Patients[J]. Annals of Intensive Care, 2017, 7(1): 11. doi: 10.1186/s13613-017-0233-1

    CrossRef Google Scholar

    [7] KNAUS W A, DRAPER E A, WAGNER D P, et al. APACHE Ⅱ: A Severity of Disease Classification System[J]. Critical Care Medicine, 1985, 13(10): 818-829. doi: 10.1097/00003246-198510000-00009

    CrossRef Google Scholar

    [8] VINCENT J L, MORENO R, TAKALA J, et al. The SOFA (Sepsis-related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure[J]. Intensive Care Medicine, 1996, 22(7): 707-710. doi: 10.1007/BF01709751

    CrossRef Google Scholar

    [9] TSANTES A, TSANGARIS I, KOPTERIDES P, et al. The Role of Procalcitonin and IL-6 in Discriminating Between Septic and Non-Septic Causes of ALI/ARDS: A Prospective Observational Study[J]. Clinical Chemistry and Laboratory Medicine, 2013, 51(7): 1535-1542.

    Google Scholar

    [10] WARE L B, KOYAMA T, ZHAO Z G, et al. Biomarkers of Lung Epithelial Injury and Inflammation Distinguish Severe Sepsis Patients with Acute Respiratory Distress Syndrome[J]. Critical Care, 2013, 17(5): R253. doi: 10.1186/cc13080

    CrossRef Google Scholar

    [11] LUO D H, WAN X, LIU J M, et al. Optimally Estimating the Sample Mean from the Sample Size, Median, Mid-Range, and/or Mid-quartile Range[J]. Statistical Methods in Medical Research, 2018, 27(6): 1785-1805. doi: 10.1177/0962280216669183

    CrossRef Google Scholar

    [12] WAN X, WANG W Q, LIU J M, et al. Estimating the Sample Mean and Standard Deviation from the Sample Size, Median, Range and/or Interquartile Range[J]. BMC Medical Research Methodology, 2014(14): 135.

    Google Scholar

    [13] BARDAJÍ-CARRILLO M, MARTÍN-FERNÁNDEZ M, LÓPEZ-HERRERO R, et al. Post-operative Sepsis-induced Acute Respiratory Distress Syndrome: Risk Factors for a Life-threatening Complication[J]. Frontiers in Medicine, 2024(11): 1338542.

    Google Scholar

    [14] CHEN W F, LIU L L, YANG J H, et al. microRNA-146b Correlates with Decreased Acute Respiratory Distress Syndrome Risk, Reduced Disease Severity, and Lower 28-day Mortality in Sepsis Patients[J]. Journal of Clinical Laboratory Analysis, 2020, 34(12): e23510. doi: 10.1002/jcla.23510

    CrossRef Google Scholar

    [15] FAN Y H, YE Z M, TANG Y. Serum HMGB1 and Soluble Urokinase Plasminogen Activator Receptor Levels Aid Diagnosis and Prognosis Prediction of Sepsis with Acute Respiratory Distress Syndrome[J]. Biomarkers in Medicine, 2023, 17(4): 231-239. doi: 10.2217/bmm-2022-0899

    CrossRef Google Scholar

    [16] HUANG C M, LI J J, WEI W K. Clinical Significance of Platelet Mononuclear Cell Aggregates in Patients with Sepsis and Acute Respiratory Distress Syndrome[J]. World Journal of Clinical Cases, 2024, 12(5): 966-972. doi: 10.12998/wjcc.v12.i5.966

    CrossRef Google Scholar

    [17] LI S L, ZHAO D N, CUI J, et al. Prevalence, Potential Risk Factors and Mortality Rates of Acute Respiratory Distress Syndrome in Chinese Patients with Sepsis[J]. Journal of International Medical Research, 2020, 48(2): 300060519895659. doi: 10.1177/0300060519895659

    CrossRef Google Scholar

    [18] LIU Y J, PENG H, GUI F. Long Noncoding Plasmacytoma Variant Translocation 1 Facilitates the Surveillance of Acute Respiratory Distress Syndrome and Mortality Prediction in Sepsis[J]. Biomarkers in Medicine, 2021, 15(6): 401-412. doi: 10.2217/bmm-2020-0506

    CrossRef Google Scholar

    [19] MA Y T, ZHU C R, MA X C, et al. Risk Factors of Acute Respiratory Distress Syndrome in Sepsis Caused by Intra-Abdominal Infections: A Retrospective Study[J]. Surgery, 2024, 175(5): 1432-1438.

    Google Scholar

    [20] NAM H, JANG S H, HWANG Y I, et al. Nonpulmonary Risk Factors of Acute Respiratory Distress Syndrome in Patients with Septic Bacteraemia[J]. The Korean Journal of Internal Medicine, 2019, 34(1): 116-124.

    Google Scholar

    [21] SHI Y Q, WANG L, YU S H, et al. Risk Factors for Acute Respiratory Distress Syndrome in Sepsis Patients: A Retrospective Study from a Tertiary Hospital in China[J]. BMC Pulmonary Medicine, 2022, 22(1): 238.

    Google Scholar

    [22] SHI W T, ZHU W, YU J N, et al. LncRNA HOTTIP as a Diagnostic Biomarker for Acute Respiratory Distress Syndrome in Patients with Sepsis and to Predict the Short-term Clinical Outcome: A Case-control Study[J]. BMC Anesthesiology, 2024, 24(1): 30.

    Google Scholar

    [23] SINGH K, HARIHARAN S, VENTOUR D, et al. Epidemiology and Management Trends of Patients with Sepsis and Septic Shock in the Intensive Care Unit: A Prospective Trial in the Caribbean[J]. Cureus, 2020, 12(10): e10980.

    Google Scholar

    [24] SUN C Z, XIE Y P, ZHU C C, et al. Serum Mrp 8/14 as a Potential Biomarker for Predicting the Occurrence of Acute Respiratory Distress Syndrome Induced by Sepsis: A Retrospective Controlled Study[J]. Journal of Inflammation Research, 2024(17): 2939-2949.

    Google Scholar

    [25] VILLAR J, HERRÁN-MONGE R, GONZÁLEZ-HIGUERAS E, et al. Clinical and Biological Markers for Predicting ARDS and Outcome in Septic Patients[J]. Scientific Reports, 2021, 11(1): 22702.

    Google Scholar

    [26] WANG Y M, ZHENG Y J, CHEN Y, et al. Effects of Fluid Balance on Prognosis of Acute Respiratory Distress Syndrome Patients Secondary to Sepsis[J]. World Journal of Emergency Medicine, 2020, 11(4): 216-222.

    Google Scholar

    [27] WANG D H, JIA H M, ZHENG X, et al. Attributable Mortality of ARDS among Critically Ⅲ Patients with Sepsis: A Multicenter, Retrospective Cohort Study[J]. BMC Pulmonary Medicine, 2024, 24(1): 110.

    Google Scholar

    [28] WU X L, CHEN D, YU L. The Value of Circulating Long Non-coding RNA Maternally Expressed Gene 3 as a Predictor of Higher Acute Respiratory Distress Syndrome Risk and 28-Day Mortality in Sepsis Patients[J]. Journal of Clinical Laboratory Analysis, 2020, 34(11): e23488.

    Google Scholar

    [29] YANG Y K, YANG L, LIU Z Q, et al. Long Noncoding RNA NEAT 1 and Its Target microRNA-125a in Sepsis: Correlation with Acute Respiratory Distress Syndrome Risk, Biochemical Indexes, Disease Severity, and 28-Day Mortality[J]. Journal of Clinical Laboratory Analysis, 2020, 34(12): e23509.

    Google Scholar

    [30] YANG P, IFFRIG E, HARRIS F, et al. Serial Measurements of Protein Biomarkers in Sepsis-induced Acute Respiratory Distress Syndrome[J]. Critical Care Explorations, 2022, 4(10): e0780.

    Google Scholar

    [31] YANG Q, ZHANG X J, LUO L, et al. Clinical Application of Serum NLRP3 on the Diagnosis and Prognosis of Sepsis Patients Complicated with Acute Respiratory Distress Syndrome[J]. Frontiers in Immunology, 2023(14): 1205132.

    Google Scholar

    [32] 代旭亮. 急诊脓毒症患者呼吸窘迫综合征发生的影响因素[J]. 现代临床医学, 2022, 48(2): 107-108, 110.

    Google Scholar

    [33] 高甜甜, 徐蔚, 李明樾, 等. 毛细血管渗漏指数联合MPV/PLT对腹腔脓毒症患者并发ARDS的预测价值[J]. 医学研究杂志, 2023, 52(12): 150-154.

    Google Scholar

    [34] 葛建辉. 脓毒症患者并发ARDS的早期危险因素分析[J]. 浙江医学, 2017, 39(20): 1789-1792.

    Google Scholar

    [35] 郭小芙, 席与斌, 陈刚. 血清HMGB1、ESM-1水平对脓毒症并发ARDS的预测价值[J]. 山东医药, 2020, 60(31): 28-31.

    Google Scholar

    [36] 雷翔慧, 李涛. 血管生成素-2、瓜氨酸联合降钙素原对脓毒症合并急性呼吸窘迫综合征诊断及预后的评估[J]. 南昌大学学报(医学版), 2022, 62(1): 43-47.

    Google Scholar

    [37] 李金兰, 张丽中, 樊柳汝, 等. 血管生成素-2及可溶性糖基化终末产物受体在脓毒症相关急性呼吸窘迫综合征发病中的作用[J]. 实用医学杂志, 2022, 38(24): 3095-3099, 3105.

    Google Scholar

    [38] 梁希泉, 陈尚华, 刘琴. 血清高迁移率族蛋白B1检测在脓毒症合并ARDS患者中的临床监测效果研究[J]. 国际检验医学杂志, 2020, 41(6): 659-662.

    Google Scholar

    [39] 刘海梅, 龙晓凤, 郑真真, 等. 血清HSP70、sCD74对脓毒症并发急性呼吸窘迫综合征的预测价值[J]. 山东医药, 2021, 61(22): 14-17.

    Google Scholar

    [40] 王蒲春, 刘德志, 范新, 等. 血浆长链非编码RNA THRIL、NEAT1表达水平与脓毒症并发急性呼吸窘迫综合征的关系[J]. 临床急诊杂志, 2021, 22(8): 534-540.

    Google Scholar

    [41] 魏旭升, 李小芳, 黄彪, 等. miR-146b对脓毒症并发ARDS的预测及与预后的关系分析[J]. 国际检验医学杂志, 2022, 43(11): 1329-1333.

    Google Scholar

    [42] 徐宁, 贾娟, 李莉, 等. 血清miRNA-125b联合miRNA-133a早期诊断脓毒症合并急性呼吸窘迫综合征的价值[J]. 中国临床研究, 2023, 36(4): 537-541.

    Google Scholar

    [43] 俞凡, 赵林军, 吴锦鸿, 等. 血清沉默信息调节因子2相关酶1、血管紧张素转换酶2水平与脓毒症相关急性呼吸窘迫综合征的相关性[J]. 中国医刊, 2024, 59(2): 213-217.

    Google Scholar

    [44] 湛振业, 蔡海荣, 梁兴民, 等. 脓毒症并发急性呼吸窘迫综合征的危险因素分析[J]. 山西医药杂志, 2021, 50(20): 2896-2898.

    Google Scholar

    [45] 赵春玲, 李玉叶, 王秋义, 等. 脓毒症患者并发急性呼吸窘迫综合征的风险预测列线图模型建立[J]. 中华危重病急救医学, 2023, 35(7): 714-718.

    Google Scholar

    [46] 赵春玲, 袁红岩, 尤丕聪, 等. 肺损伤预测评分联合生物学标志物对脓毒症并发急性呼吸窘迫综合征的预测价值[J]. 中国实用内科杂志, 2023, 43(9): 740-743.

    Google Scholar

    [47] 中国医师协会急诊医师分会, 中国研究型医院学会休克与脓毒症专业委员会. 中国脓毒症/脓毒性休克急诊治疗指南(2018)[J]. 感染·炎症·修复, 2019, 20(1): 3-22.

    Google Scholar

    [48] RUDD K E, JOHNSON S C, AGESA K M, et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study[J]. The Lancet, 2020, 395(10219): 200-211.

    Google Scholar

    [49] MARTÍN S, PÉREZ A, ALDECOA C. Sepsis and Immunosenescence in the Elderly Patient: A Review[J]. Frontiers in Medicine, 2017(4): 20.

    Google Scholar

    [50] SCHULIGA M, READ J, KNIGHT D A. Ageing Mechanisms that Ccontribute to Tissue Remodeling in Lung Disease[J]. Ageing Research Reviews, 2021(70): 101405.

    Google Scholar

    [51] HUANG X, ZHAO M. High Expression of Long Non-Coding RNA MALAT1 Correlates with Raised Acute Respiratory Distress Syndrome Risk, Disease Severity, and Increased Mortality in Sepstic Patients[J]. International Journal of Clinical and Experimental Pathology, 2019, 12(5): 1877-1887.

    Google Scholar

    [52] BARNES P J. Inflammatory Mechanisms in Patients with Chronic Obstructive Pulmonary Disease[J]. Journal of Allergy and Clinical Immunology, 2016, 138(1): 16-27.

    Google Scholar

    [53] JACOBS M L, DAGGETT W M, CIVETTE J M, et al. Acute Pancreatitis: Analysis of Factors Influencing Survival[J]. Annals of Surgery, 1977, 185(1): 43-51.

    Google Scholar

    [54] 江浩, 郑贸根, 朱超男, 等. APACHEⅡ、ISS、SOFA评分对创伤继发ARDS严重程度及预后的预测价值比较[J]. 临床肺科杂志, 2018, 23(11): 2074-2078.

    Google Scholar

    [55] YANG K, FAN M, WANG X, et al. Lactate Promotes Macrophage HMGB1 Lactylation, Acetylation, and Exosomal Release in Polymicrobial Sepsis[J]. Cell Death & Differentiation, 2022, 29(1): 133-146.

    Google Scholar

    [56] RIEDEMANN N C, GUO R F, HOLLMANN T J, et al. Regulatory Role of C5a in LPS-induced IL-6 Production by Neutrophils During Sepsis[J]. The FASEB Journal, 2004, 18(2): 1-16.

    Google Scholar

    [57] 朱钰珊, 彭学容, 范苏苏, 等. 炎症与氧化应激在急性肺损伤中的作用研究进展[J]. 生物医学, 2024, 14(1): 48-55.

    Google Scholar

    [58] 叶海燕, 王学斌, 巨轩, 等. 血浆ESM-1对脓毒症ARDS发生预测价值的研究[J]. 同济大学学报(医学版), 2019, 40(6): 853-858.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  /  Tables(4)

Article Metrics

Article views(233) PDF downloads(164) Cited by(0)

Access History

Other Articles By Authors

Risk Factors and Predictors of Sepsis Complicated with ARDS: A Meta-analysis

    Corresponding author: FAN Xianming

Abstract: 

A meta-analysis was conducted to evaluate the risk factors and predictors of sepsis complicated with acute respiratory distress syndrome (ARDS) in patients. Relevant studies on sepsis complicated by ARDS were retrieved from following databases: CNKI, Wanfang Data Knowledge Service Platform, VIP, Sinomed, PubMed, EMBASE, Web of Science and the Cochrane Library. The searched period was from January 1, 2016 to August 15, 2024. The search English terms included Sepsis, Acute respiratory distress syndrome, Risk factors, Prevalence, Incidence, Mortality, and Biomarkers. Statistical analysis was performed using Stata SE 15.1 software. A total of 35 studies were included, involving 3 715 patients with sepsis complicated by ARDS. The results indicated that the overall incidence of ARDS in patients with sepsis was 28.8%. In the analyzed risk factors, age, smoking history, pulmonary infection, comorbid chronic obstructive pulmonary disease (COPD), pancreatitis, shock, APACHE Ⅱ score, SOFA score, serum lactate, and serum HMGB1 were all found to be significantly associated with the development of ARDS in sepsis. Regarding to the predictive markers, the APACHE Ⅱ score, SOFA score, C-reactive protein (CRP), and PaO2/FiO2 ratio demonstrated significant predictive value. In summary, the incidence of sepsis complicated with ARDS is relatively high, and many risk factors are associated with the increase of the likelihood of its occurrence.

  • 开放科学(资源服务)标识码(OSID):

  • 脓毒症(Sepsis)是一种由严重感染引发的全身性炎症反应综合征,可导致多器官功能损伤,并具有较高的病死率[1]。急性呼吸窘迫综合征(Acute Respiratory Distress Syndrome,ARDS)是一种常见且严重的并发症,其特征是由肺内或肺外因素引发的急性、弥漫性炎症性肺损伤,组织学特征包括肺泡水肿、炎症反应、透明膜形成和肺泡出血[2]。脓毒症是引起ARDS的主要原因之一,可通过释放炎症介质,损害全身血管并破坏肺部毛细血管内皮细胞,同时激活肺部免疫细胞,加剧肺损伤,最终导致ARDS的发生[3]。多项研究表明,年龄、吸烟史、感染严重程度以及基础疾病等因素均可能增加脓毒症患者发生ARDS的风险[4-6]。在预测指标方面,APACHEⅡ和SOFA评分已被广泛应用,APACHEⅡ评分通过综合急性生理指标和基础健康状况,从而反映患者的疾病严重程度;SOFA评分则侧重于多器官功能障碍的评估,尤其在脓毒症相关肺损伤的早期识别中具有重要意义[7-8]。此外,一些传统的生物标志物(如C反应蛋白和降钙素原)在脓毒症引发ARDS的预测和识别中也同样具有意义[9]。随着检测技术的进步,研究人员逐渐关注肺上皮损伤标志物的应用潜力,例如表面活性蛋白D(SPD)、晚期糖基化终末产物受体(RAGE)等新兴标志物在预测ARDS风险方面可能具有更高的准确性[10]。鉴于目前尚无统一的危险因素评估标准和风险预测标准,且不同研究间结果差异较大,本研究运用Meta分析系统评价脓毒症并发ARDS(以下简称SA)的发病率、危险因素及相关指标的预测效能,旨在为临床早期干预和个体化治疗提供理论支持。

1.   材料与方法
  • 计算机检索中国知网(以下简称知网)、万方数据知识服务平台(以下简称万方)、维普网(以下简称维普)、Sinomed、PubMed、EMBASE、Web of Science和Cochrane Library数据库,检索日期为2016年1月1日至2024年8月15日。中文主题检索词:脓毒症、脓毒血症、感染性休克、严重脓毒症、全身炎症反应综合征、急性呼吸窘迫综合征、危险因素、发病率、死亡率、患病率、炎症因子、标志物;英文主题检索词:Sepsis、Acute respiratory distress syndrome、Risk factors、Prevalence、Incidence、Mortality、Biomarkers以及相应的自由词。为确保文献的全面性,还检查了纳入研究及综述的参考文献,以搜寻可能遗漏的相关文献。

  • 1) 纳入符合Sepsis-3标准的18岁以上非妊娠SA患者(以无ARDS的脓毒症患者作为对照组),且伴随明确诊断为ARDS(符合柏林定义)。

    2) 纳入涉及SA的发病率、危险因素或预测指标的观察性研究。

    3) 纳入明确报告先发生脓毒症后并发ARDS的研究,排除未明确疾病先后顺序或因其他原因导致ARDS的研究。

    4) 发病率(RSA)的计算方法:

    式中:NARDS为脓毒症发作后ARDS患者的发生数;N脓毒症为符合诊断标准的脓毒症患者数量。

    5) 纳入中英文研究,排除信件、综述、评论、摘要和社论。每项研究均由2名评价员独立评估合格性。评价员首先审阅标题和摘要,随后筛查符合纳入标准的全文。在评价过程中,任何分歧或不确定性均通过讨论协商一致解决。

  • 2名评价员单独提取资料并使用预定义的表格评估其质量,任何分歧都通过讨论或咨询第3位评价员来解决。提取的数据包括以下信息:第1作者姓名、地区、研究时间、研究类型、受试者的人口统计学特征、脓毒症例数、SA例数、SA的发病率、危险因素、预测指标。采用纽卡斯尔渥太华质量评估量表(NOS)评估每个队列或病例对照研究的质量。根据NOS评分,研究分为低、中等或高质量,评分为0~3、4~6和7~9。

  • 采用Stata SE 15.1软件进行统计分析,使用二分类变量和连续变量的合并比值比(SOR)、标准均值差(SMD)及相应的95%CI来权衡SA的危险因素及预测指标。对分析中涉及的中位数数据,将其转换为均值和标准差[11-12]。采用I2Q检验评估纳入研究的异质性,显著异质性定义为I2>50%或Q检验p<0.01。当存在显著异质性时,采用随机效应模型;反之,使用固定效应模型。应用亚组分析和Meta回归探讨发病率异质性的潜在来源,采用敏感性分析评估结果的稳健性。采用漏斗图和Egger线性回归评价纳入研究的发表偏倚,不对称漏斗图或Egger检验p<0.05提示存在显著发表偏倚。若检测到显著发表偏倚,进一步使用“剪补法”探讨可能的“缺失研究”对合并效应估计的影响。

2.   结果与分析
  • 通过检索中英文数据库,分别获取发病率及危险因素相关文献6 323篇记录和相关指标文献3 064篇记录。经过严格筛选,最终纳入35项研究,其中发病率研究4项、危险因素研究12项、相关指标研究4项、发病率和危险因素11项、发病率和危险因素及相关指标研究3项、危险因素和相关指标研究1项(图 1)。

  • 35项研究中包含32项队列研究和3项病例对照研究。所有研究发表时间为2017-2024年,脓毒症患者的样本数量为47~2 323人,SA患者共3 715人,涉及研究有亚洲(31条)、欧洲(2条)、北美(2条)地区,所有纳入的研究均被归类为中等至高质量,NOS评分范围为6~9(表 1)。

  • 表 2可知,在18项研究选项中,共纳入4 852例脓毒症患者,其中由脓毒症引起ARDS的患者有402例。ARDS的发病率为9.9%~67.8%,SA的发病率为28.8%,95%CI为0.18~0.40,研究间异质性有统计学意义(I2=98.9%,p<0.01)。

  • 通过对SA总发病率的亚组分析(表 2),样本量超过500的选项中发病率相对较高(43.7%),出版年份在2017-2019年选项中发病率相对较低(19.2%);在地域差异方面,欧美的发病率(24.5%)低于亚洲(29.7%)。此外,发病年龄也存在一定的差异,65岁以上人群的发病率(24.9%)低于65岁及以下人群;疾病严重程度APACHEⅡ评分在17分以上时,发病率显著升高(40.3%);SOFA评分为6.5~7.5的发病率也较高(35.7%)。Meta回归分析结果显示,小样本(p=0.016)是影响SA发病率的重要因素。

  • 为了探讨个别纳入研究对总体汇总估计的影响,我们进行了敏感性分析。分析结果表明,SA综合发病率与整体合并效应一致,表明总体汇总估计是稳健且可信的。偏倚分析表明,Egger检验(p=0.032)和漏斗图的不对称分布提示了存在小样本效应和发表偏倚的风险。通过修剪填充法的结果表明偏倚对总体效应量的影响较小(图 2)。

  • 年龄是SA发病率增加的一个因素(SOR=1.09,95%CI为1.02~1.17),吸烟史提高了SA的发病率(SOR=3.58,95%CI为2.32~5.53),肺部感染显著增加了SA的发病率(SOR=1.97,95%CI为1.68~2.31),合并COPD的患者发病风险显著升高(SOR=6.31,95%CI为3.21~12.41),胰腺炎亦表现出显著的相关性(SOR=3.84,95%CI为2.45~6.02)。此外,休克状态与SA的发病率也显著相关(SOR=1.97,95%CI为1.56~2.49)。在疾病严重程度评分方面,高APACHEⅡ评分与SA发病率升高密切相关(SOR=1.30,95%CI为1.13~1.50),SOFA评分则表现出相关性(SOR=1.23,95%CI为1.11~1.37)。血清乳酸(SOR=1.92,95%CI为1.60~2.32)和血清HMGB1(SOR=2.25,95%CI为1.53~3.31)的高水平也与发病率显著相关。在CRP(SOR=1.01,95%CI为1.00~1.03)、PCT(SOR=1.02,95%CI为0.97~1.06)、IL-6(SOR=1.00,95%CI为0.94~1.07)与SA发病率之间相关性不大(表 3)。

  • 对具有显著异质性的肺部感染、休克、APACHEⅡ评分及SOFA评分的危险因素进行了敏感性分析和Egger检验,结果显示肺部感染和休克的合并效应值稳健且与总体结果一致,Egger检验显示研究中存在发表偏倚(p<0.05)。考虑到这一点,我们采用剪补法评估缺失研究对合并结果的影响,分别补充4项研究后,结果并未发生逆转,表明合并结果是稳健的。对于APACHEⅡ评分和SOFA评分,敏感性分析和Egger检验未显示出明显的发表偏倚(p=0.258,p=0.738)。

  • 进一步的分析显示,APACHEⅡ评分能够很好地区分脓毒症患者和SA患者,并对ARDS的发生具有预测作用(SMD=2.39,95%CI为0.38~4.40)。我们还发现,SA患者的SOFA评分(SMD=0.74,95%CI为0.47~1.01)、CRP(SMD=0.79,95%CI为0.53~1.04)水平高于脓毒症患者,而PaO2/FiO2(SMD=-1.12,95%CI为-1.33~-0.91)则显著低于脓毒症患者(表 4)。

3.   讨论与结论
  • 本研究系统性分析了SA的发病率及危险因素,提供了较为全面的流行病学数据和风险因素特征。总体上,SA的发病率为28.8%,然而研究间的异质性显著,Meta回归分析提示异质性主要源自小样本。在样本量较大的研究中,SA的发病率较高(43.7%),考虑到小样本研究可能因统计效能较低导致发病率的低估,大样本研究覆盖更多患者群体,从而更接近真实水平的发病率。在2017-2019年,SA的发病率为19.2%,这一趋势可能反映出该时期诊疗手段的提升对控制SA的作用[47]。地理差异影响了SA的发病率,欧美地区的发病率为24.5%,低于亚洲的29.7%。有研究表明,欧洲脓毒症的发生率相对别的地区较低,这种差异很可能与当地的种族构成和社会经济水平有关[48]。亚组分析显示,65岁以上人群的SA发病率(24.9%)低于65岁以下人群。这一现象与老年人免疫衰老相关,免疫反应的减弱一定程度上减少了过度炎症的反应[49-50]

    对13个SA危险因素进行分析,最终确定了10个与SA显著相关的危险因素。结果显示,年龄增长被证实为SA的一个显著危险因素,这与早期研究的结论相符[51]。吸烟史、肺部感染、合并COPD、胰腺炎及休克状态均显著增加了SA的患病风险。这些因素可能通过增强炎症反应(如激活中性粒细胞、促炎性细胞因子的释放)和损害肺功能(如肺泡上皮细胞和内皮细胞的破坏、气体交换受限)等机制来促进ARDS的发生[52-53]。此外,APACHEⅡ评分和SOFA评分也被认为是影响SA发病率的重要指标,特别是在APACHEⅡ评分超过17分时,SA的发病率显著上升至40.3%,SOFA评分在6.5~7.5的患者,发病率达到了35.7%。脓毒症患者较高的APACHEⅡ评分和SOFA评分,通常意味着患者的全身炎症反应更为剧烈、器官功能受损更为严重,从而提高了ARDS的发生风险[54]。血清乳酸和血清HMGB1水平升高也与SA有关,这提示了代谢紊乱和炎症在其发病机制中的潜在作用[55]。此外,CRP、PCT和IL-6与SA发病率相关性不大,可能是因为它们更多地反映了全身的炎症状态,未必直接与肺部特异性损伤相关[56],也可能是因为ARDS的发生,除了炎症因子风暴之外,还与氧化应激有关[57]

    在本研究中,我们观察到APACHEⅡ评分(SMD=2.39,95%CI为0.38~4.40)和SOFA评分(SMD=0.74,95%CI为0.47~1.01)在SA预测中具有重要意义。除评分标准外,生物标志物也能对SA进行预测,SA患者的CRP水平显著升高,能够有效区分脓毒症患者和SA患者[58]。这表明CRP作为一个早期指标,对脓毒症患者发生ARDS具有提示作用。考虑到单一指标可能因个体差异而预测能力有限,未来研究应探索将多种生物标志物组合应用于风险评估中,如联合使用RAGE、CXCL16、Ang-2和PaO2/FiO2等指标能很好地预测ARDS的发生风险[25]。这种多个标志物联合模型有助于全面评估疾病的进展,优化早期干预策略。

    本研究存在以下局限性:1)纳入的研究存在较大的异质性,尽管我们进行了详细的亚组分析,但多数组别的异质性仍然较高。2)部分预测指标数据较为有限,可能导致预测估计存在不确定性。3)本研究主要纳入了来自亚洲、欧洲和美洲的研究,缺乏其他地区的数据,可能限制了结果的普适性。

    综上所述,SA发病率较高,其发生与年龄、吸烟史及多种临床特征密切相关。疾病严重程度评分和炎性标志物对ARDS的发生具有预测作用。未来需要开展更多大样本、跨区域的研究,以探索SA风险因素和预测生物标志物,为早期预示和临床干预提供更可靠的依据。

Figure (2)  Table (4) Reference (58)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return