-
开放科学(资源服务)标志码(OSID):
-
文献[1]为了构建复杂性分析的拓扑基础,在复杂性空间中引入了一种拟度量,并将其应用于分治算法的效率分析中. 随后,文献[2]进一步研究了该拟度量空间的性质,证明了复杂性空间是Smyth完备的,可以被建模为拟范数半线性空间. 关于此空间的更多结果详见文献[3-6].
算法的渐近效率在复杂性分析中具有重要的应用. 然而,正如本文例2所述,文献[1]中引入的拟度量并不适合刻画算法的渐近效率.
为解决上述问题,在本文中,我们在复杂性函数集上引入了一种模糊拟度量,并且证明了它可以刻画算法的渐近效率. 此外,我们建立了一个不动点定理,并应用此定理证明了与分治算法和快速排序算法相关的递归方程解的存在性和唯一性.
Application of Fuzzy Quasi-Metric in Complexity Analysis
-
摘要: 在复杂性理论中,复杂性分析主要是针对算法的效率进行分析. 通常地,在复杂性分析中更多的是研究算法的渐近效率. 近年来,拟度量在复杂性分析中的应用受到学者们的广泛研究,但是它也存在着一定的局限性,例如拟度量并不适合刻画算法渐近效率的高低. 为了解决这个问题,本文引入了复杂性函数集上的模糊拟度量,并以此刻画了算法渐近效率的高低. 同时,通过研究它的基本性质,建立了一个不动点定理,并应用该不动点定理研究了与分治算法相关的递归方程的解的存在性和唯一性,以及与快速排序算法相关的递归方程的解的存在性和唯一性. 以上结果构建起了模糊拟度量和算法的渐近效率之间的联系,为模糊拟度量在算法应用方面的进一步研究提供了一种新的有效途径.Abstract: In complexity theory, complexity analysis is mainly aimed at the efficiency of the algorithm. Generally, in complexity analysis, more attention is paid to the asymptotic efficiency of the algorithm. In recent years, the application of quasi-metric in complexity analysis has been widely studied by scholars, but it also has some limitations. For example, quasi-metric is not suitable for describing the asymptotic efficiency of algorithms. In order to solve this problem, a fuzzy quasi-metric in a complexity space is introduced and used to describe the asymptotic efficiency of algorithms. After giving some results of the fuzzy quasi-metric, a fixed point theorem in a complexity space is established. As its application, the existence and uniqueness of the solution of recurrence equations associated with Divide-and-Conquer algorithm and the existence and uniqueness of the solution of recurrence equations associated with Quicksort algorithm are proven. The above results construct the relationship between fuzzy quasi-metric and the asymptotic efficiency of the algorithm, and provide a new and effective approach for the further research of application of fuzzy quasi-metric in algorithms.
-
Key words:
- fuzzy quasi-metric /
- complexity /
- algorithm /
- asymptotic efficiency .
-
[1] SCHELLEKENS M. The Smyth Completion: a Common Foundation for Denotational Semantics and Complexity Analysis[J]. Electronic Notes in Theoretical Computer Science, 1995, 1: 535-556. doi: 10.1016/S1571-0661(04)00029-5 [2] ROMAGUERA S, SCHELLEKENS M. Quasi-Metric Properties of Complexity Spaces[J]. Topology and Its Applications, 1999, 98(1-3): 311-322. doi: 10.1016/S0166-8641(98)00102-3 [3] ROMAGUERA S, SCHELLEKENS M. Duality and Quasi-Normability for Complexity Spaces[J]. Applied General Topology, 2002, 3(1): 91-112. doi: 10.4995/agt.2002.2116 [4] GARCÍA-RAFFI L M, ROMAGUERA S, SÁNCHEZ-PÉREZ E A. Sequence Spaces and Asymmetric Norms in the Theory of Computational Complexity[J]. Mathematical and Computer Modelling, 2002, 36(1-2): 1-11. doi: 10.1016/S0895-7177(02)00100-0 [5] doi: http://core.ac.uk/download/pdf/81991693.pdf ROMAGUERA S, SÁNCHEZ-PÉREZ E A, VALERO O. The Dual Complexity Space as the Dual of a Normed Cone[J]. Electronic Notes in Theoretical Computer Science, 2006, 161(2): 165-174. [6] ROMAGUERA S, SCHELLEKENS M. Partial Metric Monoids and Semivaluation Spaces[J]. Topology and Its Applications, 2005, 153(5-6): 948-962. doi: 10.1016/j.topol.2005.01.023 [7] doi: http://www.ams.org/mathscinet-getitem?mr=115153 SCHWEIZER B, SKLAR A. Statistical Metric Spaces[J]. Pacific Journal of Mathematics, 1960, 10(1): 314-334. [8] GREGORI V, ROMAGUERA S. Fuzzy Quasi-Metric Spaces[J]. Applied General Topology, 2004, 5(1): 129-136. doi: 10.4995/agt.2004.2001 [9] ROMAGUERA S, TIRADO P. The Complexity Probabilistic Quasi- Metric Space[J]. Journal of Mathematical Analysis and Applications, 2011, 376(2): 732-740. doi: 10.1016/j.jmaa.2010.11.056 [10] doi: http://dml.cz/bitstream/handle/10338.dmlcz/125556/Kybernetika_11-1975-5_2.pdf KRAMOSIL I, MICHALEK J. Fuzzy Metric and Statistical Metric Spaces[J]. Kyberneticall Praha, 1975, 11(5): 215-229. [11] 杨浩, 吴健荣. 模糊度量空间中的有界集[J]. 西南大学学报(自然科学版), 2019, 41(10): 45-50. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2019.10.006 [12] 杨浩, 吴健荣. 模糊度量空间中的伪度量结构及等距同构[J]. 西南大学学报(自然科学版), 2021, 43(6): 95-100. doi: http://xbgjxt.swu.edu.cn/article/doi/10.13718/j.cnki.xdzk.2021.06.013 [13] REILLY I L, SUBRAHMANYAM P V, VAMANAMURTHY M K. Cauchy Sequences in Quasi-Pseudo-Metric Spaces[J]. Monatshefte für Mathematik, 1982, 93(2): 127-140. doi: 10.1007/BF01301400 [14] AHO A V, HOPCROFT J E, ULLMAN J. Data Structures and Algorithms[M]. New York: Addison-Wesley, 1983. [15] KRUSE R L. Data Structures and Program Design[M]. Englewood: Prentice-Hall, 1987. [16] ROMAGUERA S, SAPENA A, TIRADO P. The Banach Fixed Point Theorem in Fuzzy Quasi-Metric Spaces with Application to the Domain of Words[J]. Topology and Its Applications, 2007, 154(10): 2196-2203. doi: 10.1016/j.topol.2006.09.018 [17] SAADATI R, VAEZPOUR S M, CHO Y J. Quicksort Algorithm: Application of a Fixed Point Theorem in Intuitionistic Fuzzy Quasi-Metric Spaces at a Domain of Words[J]. Journal of Computational and Applied Mathematics, 2009, 228(1): 219-225. doi: 10.1016/j.cam.2008.09.013
计量
- 文章访问数: 512
- HTML全文浏览数: 512
- PDF下载数: 63
- 施引文献: 0